精英家教網 > 高中數學 > 題目詳情


已知橢圓:的一個焦點為且過點.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設橢圓E的上下頂點分別為A1,A2P是橢圓上異于A1,A2的任一點,直線PA1PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T
證明:線段OT的長為定值,并求出該定值.

(Ⅰ).(Ⅱ)線段的長為定值.

解析試題分析:(Ⅰ) 由題意得,解得,
所以橢圓的方程為.
(Ⅱ)由(Ⅰ)可知,設,其中,
直線:,令,得;
直線:,令,得.
設圓的圓心為,半徑為
,
,

,所以,所以,
所以,即線段的長為定值.
考點:本題考查了橢圓方程的求法及直線與橢圓的位置關系
點評::從近幾年課標地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關系同本部分知識的結合,將逐步成為今后命題的一種趨勢

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在直角坐標系中,曲線的參數方程為為參數)。
若以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(其中為常數)
(1)當時,曲線與曲線有兩個交點.求的值;
(2)若曲線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


已知拋物線和橢圓都經過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知過拋物線的焦點,斜率為的直線交拋物線于)兩點,且
(1)求該拋物線的方程;
(2)為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,點M為線段PQ的中點.若點M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線與橢圓有相同的焦點,點、分別是橢圓的右、右頂點,若橢圓經過點
(1)求橢圓的方程;
(2)已知是橢圓的右焦點,以為直徑的圓記為,過點引圓的切線,求此切線的方程;
(3)設為直線上的點,是圓上的任意一點,是否存在定點,使得?若存在,求出定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

直線與橢圓交于兩點,已知
,,若且橢圓的離心率,又橢圓經過點
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

同步練習冊答案