已知雙曲線與橢圓有相同的焦點,點、分別是橢圓的右、右頂點,若橢圓經(jīng)過點
(1)求橢圓的方程;
(2)已知是橢圓的右焦點,以為直徑的圓記為,過點引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點,是圓上的任意一點,是否存在定點,使得?若存在,求出定點的坐標(biāo);若不存在,說明理由.

(Ⅰ).(Ⅱ).(Ⅲ)存在定點

解析試題分析:(Ⅰ)依題意,,
所以橢圓的方程為,
代入D點坐標(biāo),解得,由此得,
所以橢圓的方程為.                     (4分)
(Ⅱ)由(Ⅰ)知,故圓的方程為,
則由知,點在圓上,
因為,所以切線的斜率為,
故所求切線的方程為
.                           (8分)
(Ⅲ)設(shè),假設(shè)存在點滿足題意,
,
在圓C上,
化簡得,
因為該式對任意的恒成立,則解得
故存在定點對于直線上的點及圓上的任意一點使得成立.                           (12分)
考點:本題考查了橢圓方程及直線與圓的位置關(guān)系
點評:從近幾年課標(biāo)地區(qū)的高考命題來看,解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關(guān)系同本部分知識的結(jié)合,將逐步成為今后命題的一種趨勢.近幾年高考題中經(jīng)常出現(xiàn)了以函數(shù)、平面向量、導(dǎo)數(shù)、數(shù)列、不等式、平面幾何、數(shù)學(xué)思想方法等知識為背景,綜合考查運用圓錐曲線的有關(guān)知識分析問題、解決問題的能力,試題風(fēng)格每年都有所創(chuàng)新,但總體穩(wěn)定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動點到定點的距離比它到軸的距離大。
(1)求動點的軌跡的方程;
(2)過的直線相交于兩點,若,求弦的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點與軌跡相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


已知橢圓:的一個焦點為且過點.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點分別為A1,A2P是橢圓上異于A1,A2的任一點,直線PA1PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T
證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點,其左、右焦點分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)為坐標(biāo)原點,是直線上的一個動點,求的最小值,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點到兩點,的距離之和等于4,設(shè)點的軌跡為
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線交于兩點.k為何值時?此時的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負(fù)半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線軸上方的一個交點為.

(1)當(dāng)時,求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過橢圓的右焦點,與拋物線交于,如果以線段為直徑作圓,試判斷點與圓的位置關(guān)系,并說明理由;
(3)是否存在實數(shù),使得的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案