精英家教網 > 高中數學 > 題目詳情

【題目】將函數y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個單位,得到一個偶函數的圖象,則φ的一個可能取值為(
A.
B.
C.
D.

【答案】B
【解析】解:將函數y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個單位, 得到的函數:y=cos[2(x﹣φ)+ ]=cos(2x﹣2φ+ ),
∵所得圖象為偶函數,關于y軸對稱,
∴﹣2φ+ =kπ(k∈Z),解得φ= kπ(k∈Z),
∴當k=0時,可得φ的值是
故選:B.
【考點精析】關于本題考查的函數y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,半徑為5cm的圓形紙板內有一個相同圓心的半徑為1cm的小圓,現將半徑為1cm的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內,則硬幣與小圓無公共點的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}中,a2=6,a3+a6=27.
(1)求數列{an}的通項公式;
(2)記數列{an}的前n項和為Sn , 且Tn= ,若對于一切正整數n,總有Tn≤m成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+ ﹣1,a∈R.
(1)若關于x的不等式f(x)≤ x﹣1在[1,+∞)上恒成立,求a的取值范圍;
(2)設函數g(x)= ,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDPE中,四邊形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中點.
(1)求證:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,若函數g(x)=f(x)﹣t有三個不同的零點x1 , x2 , x3 , 且x1<x2<x3 , 則﹣ + + 的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=(
A.0
B.2
C.4
D.14

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點,M是線段AB的中點,過M作x軸的垂線C于點N.
(1)證明:拋物線C在點N處的切線與AB平行;
(2)是否存在實數k使以AB為直徑的圓M經過點N,若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點,E為BC的中點.
(1)求證:直線AE∥平面BDC1
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

查看答案和解析>>

同步練習冊答案