【題目】設(shè)函數(shù)f(x)的解析式滿足 .
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時(shí),試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)a=1時(shí),記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.
【答案】
(1)解:設(shè)x+1=t(t≠0),則x=t﹣1,
∴
∴
(2)解:當(dāng)a=1時(shí),
f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
證明:設(shè)0<x1<x2<1,則
∵0<x1<x2<1,∴x1﹣x2<0,x1x2>0,x1x2﹣1<0,
∴ ,∴f(x1)﹣f(x2)>0f(x1)>f(x2)
所以,f(x)在(0,1)上單調(diào)遞減,
同理可證得f(x)在(1,+∞)上單調(diào)遞增
(3)解:∵ ,
∴g(x)為偶函數(shù),
所以,∴y=g(x)的圖象關(guān)于y軸對(duì)稱,
又當(dāng) 時(shí),由(2)知 在 單調(diào)減,[1,2]單調(diào)增,
∴
∴當(dāng)a=1時(shí),函數(shù)g(x)在區(qū)間 上的值域的為
【解析】(1)根據(jù)整體思想x+1=t(t≠0),則x=t﹣1,代入即可得到答案;(2)先把解析式化簡后判斷出單調(diào)性,再利用定義法證明:在區(qū)間上取值﹣?zhàn)鞑瞟佔(zhàn)冃惟伵袛喾?hào)﹣下結(jié)論,因解析式由分式,故變形時(shí)必須用通分.(3)根據(jù)題意判斷出函數(shù)g(x)的奇偶性,根據(jù)(2)中函數(shù)的單調(diào)性,即可求出函數(shù)g(x)在區(qū)間 上的值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與圓(x﹣1)2+y2=1相外切且與y軸相切,則動(dòng)圓M的圓心的軌跡記C,
(1)求軌跡C的方程;
(2)定點(diǎn)A(3,0)到軌跡C上任意一點(diǎn)的距離|MA|的最小值;
(3)經(jīng)過定點(diǎn)B(﹣2,1)的直線m,試分析直線m與軌跡C的公共點(diǎn)個(gè)數(shù),并指明相應(yīng)的直線m的斜率k是否存在,若存在求k的取值或取值范圍情況[要有解題過程,沒解題方程只有結(jié)論的只得結(jié)論分].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ﹣4,g(x)=kx+3.
(1)當(dāng)a=k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)遞增與單調(diào)遞減區(qū)間;
(2)當(dāng)a∈[3,4]時(shí),函數(shù)f(x)在區(qū)間[1,m]上的最大值為f(m),試求實(shí)數(shù)m的取值范圍;
(3)當(dāng)a∈[1,2]時(shí),若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)對(duì)任意x1 , x2∈[2,4](x1<x2)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個(gè)動(dòng)點(diǎn), =λ (λ>0),| || |=2,求動(dòng)點(diǎn)Q的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南市開展支教活動(dòng),有五名教師被隨機(jī)的分到A、B、C三個(gè)不同的鄉(xiāng)鎮(zhèn)中學(xué),且每個(gè)鄉(xiāng)鎮(zhèn)中學(xué)至少一名教師,
(1)求甲乙兩名教師同時(shí)分到一個(gè)中學(xué)的概率;
(2)求A中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到A中學(xué)的人數(shù),求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= (其中常數(shù)a>0,且a≠1).
(1)當(dāng)a=10時(shí),解關(guān)于x的方程f(x)=m(其中常數(shù)m>2 );
(2)若函數(shù)f(x)在(﹣∞,2]上的最小值是一個(gè)與a無關(guān)的常數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com