【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點.

(1)求證:平面;

(2)若直線與平面所成角等于,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

(1)利用平行四邊形判定法則,證明CN平行ME,然后結(jié)合直線與平面平行判定,即可。(2)建立直角坐標系,分別計算兩平面的法向量,然后結(jié)合向量數(shù)量積,即可。

(1)取線段中點,連結(jié),因為分別是、的中點,所以

,

正方形中,的中點.所以

所以,

故四邊形為平行四邊形,

從而

又因為平面,平面,所以平面.

(2)過

因為平面平面,平面平面,平面,

所以平面,

平面,從而為直線在平面內(nèi)的射影,

為直線與平面所成角,所以.

如圖,以為坐標原點,分別以過點且平行于的直線、,所在的直線

軸、軸、軸建立空間直角坐標系,

,,,

,.

設(shè)分別為平面的法向量,

,即,

,

,即,令

,

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設(shè)備甲每天的租賃費300元,設(shè)備乙每天的租賃費400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費最少為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應(yīng)用,對購買純電動汽車的用戶進行財政補貼,財政補貼由地方財政補貼和國家財政補貼兩部分組成. 某地補貼政策如下(表示純電續(xù)航里程):

三個純電動汽車店分別銷售不同品牌的純電動汽車,在一個月內(nèi)它們的銷售情況如下:

(每位客戶只能購買一輛純電動汽車

(1)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;

(2)從上述兩個純電動汽車店的客戶中各隨機選一人,求恰有一人享受5萬元財政補貼的概率;

(3)從上述三個純電動汽車店的客戶中各隨機選一人, 這3個人享受的財政補貼分別記為. 求隨機變量的分布列. 試比較數(shù)學(xué)期望的大;比較方差 的大小. (只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且一個焦點坐標為

求橢圓的方程及離心率;

Ⅱ)過點且與x軸不垂直的直線與橢圓C交于兩點,若在線段上存在點,使得以MP, MQ為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這200個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:,,,.估計該校學(xué)生每周平均體育運動時間超過4小時的概率.

3)在樣本數(shù)據(jù)中,有40位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為該校學(xué)生的每周平均體育運動時間與性別有關(guān).(把表簡要畫在答題卡上)

男生

女生

總計

每周平均體育運動時間不超過4小時

每周平均體育運動時間超過4小時

總計

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線C的漸近線方程為,一個焦點為F0,﹣8),則該雙曲線的標準方程為_____.已知點A(﹣6,0),若點PC上一動點,且P點在x軸上方,當(dāng)點P的位置變化時,△PAF的周長的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若的兩個極值點,且,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】洛薩科拉茨Collatz,是德國數(shù)學(xué)家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,對科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請你研究:如果對正整數(shù)首項按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時,證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案