【題目】體積為的三棱錐A﹣BCD中,BC=AC=BD=AD=3,CD=2,AB<2,則該三棱錐外接球的表面積為( )
A.20πB.πC.πD.π
【答案】B
【解析】
由體積可得AB的值,進(jìn)而求出底面外接圓的半徑,及D到底面的高,由題意求出外接球的半徑,進(jìn)而求出外接球的表面積.
取CD的中點E,連接AE,BE,因為BC=AC=BD=AD=3,所以AE⊥CD,BE⊥CD,AE∩BE=E,
所以CD⊥平面ABE,且AE=BE=2,
所以
因為VA﹣BCD,所以,因為AB<2,所以,即AB=2;
在△中,,所以它的外接圓的圓心在三角形外部,即在的延長線上.
取的中點,由圖形的特征可知外接球的球心一定在平面內(nèi),且在的延長線上,如圖,
設(shè)球的半徑為,在中,;
在中,;
在正三角形中,,即.
解得,所以外接球的表面積.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進(jìn)口博覽會于2018年11月5日至10日在上海舉辦,本屆展會共有來自172個國家、地區(qū)和國際組織參會,3600多家企業(yè)參展,超過40萬名采購商到會洽談采購,其中中國館更是吸引眾人眼球.為了使博覽會有序進(jìn)行,組委會安排6名志愿者到中國館的某4個展區(qū)提供服務(wù),要求展區(qū)各安排一名志愿者,其余兩個展區(qū)各安排兩名志愿者,其中小馬和小王不在一起,則不同的安排方案共有( )
A.156種B.168種C.172種D.180種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點( )
A.向左平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
B.向左平移個單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變
C.向右平移個單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
D.向右平移個單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是衡量空氣質(zhì)量的重要指標(biāo),我國采用世衛(wèi)組織的最寬值限定值,即PM2.5日均值在以下空氣質(zhì)量為一級,在空氣質(zhì)量為二級,超過為超標(biāo),如圖是某地1月1日至10日的PM2.5(單位:)的日均值,則下列說法正確的是( )
A.10天中PM2.5日均值最低的是1月3日
B.從1日到6日PM2.5日均值逐漸升高
C.這10天中恰有5天空氣質(zhì)量不超標(biāo)
D.這10天中PM2.5日均值的中位數(shù)是43
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是關(guān)于的方程的兩個不等的實根,且,函數(shù)的定義域為,記,分別為函數(shù)的最大值和最小值.
(1)試判斷在上的單調(diào)性;
(2)設(shè),若函數(shù)是奇函數(shù),求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,且有AB∥DC,AC=CD=DAAB.
(1)證明:BC⊥PA;
(2)若PA=PC=AC,求平面PAD與平面PBC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三(3)班全班50人參加了高考前的數(shù)學(xué)模擬測試,每名學(xué)生要在規(guī)定的2個小時內(nèi)做一套高三模擬卷,現(xiàn)抽取10位學(xué)生的成績,分為甲,乙兩組,其分?jǐn)?shù)如下表:
1號 | 2號 | 3號 | 4號 | 5號 | |
甲組 | 64 | 72 | 86 | 98 | 120 |
乙組 | 60 | 76 | 90 | 92 | 122 |
(Ⅰ)分別求出甲,乙兩組學(xué)生考試所得分?jǐn)?shù)的平均數(shù)及方差,并由此分析兩組學(xué)生的成績水平;
(Ⅱ)試估計全班有多少人及格(90分及以上為及格);
(Ⅲ)從該班級甲,乙兩組中各隨機(jī)抽取1名學(xué)生,對其考試成績進(jìn)行抽查,求兩人考試分?jǐn)?shù)之和大于等于180的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為1的正方體,過對角線作平面交棱于點,交棱于點,以下結(jié)論正確的是( )
A.四邊形不一定是平行四邊形
B.平面分正方體所得兩部分的體積相等
C.平面與平面不可能垂直
D.四邊形面積的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個由正四棱錐和正四棱柱構(gòu)成的組合體,正四棱錐的側(cè)棱長為6,為正四棱錐高的4倍.當(dāng)該組合體的體積最大時,點到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com