已知點P是直角坐標平面xOy上的一個動點,|OP|=
2
(點O為坐標原點),點M(-1,0),則cos∠OPM的取值范圍是
[
2
2
,1]
[
2
2
,1]
分析:設P(x,y),表示出
PO
=(-x,-y),
PM
=(-1-x,-y)
.利用向量夾角的坐標表示建立cos∠OPM關(guān)于x的函數(shù)表達式,求出函數(shù)值域即可.
解答:解:由題意可知,點P的軌跡是以原點O為圓心,
2
為半徑的圓.
設P(x,y),
PO
=(-x,-y),
PM
=(-1-x,-y)

cos∠OPM=
PO
PM
|
PO
|×|
PM
|
=
1+x2+y2
x2+y2
×
(-1-x)2+(-y)2
=
2+x
2
×
3+2x

6+4x
=t
,則x=
t2-6
4
,則y=
t2+2
4t
2
2
t
4t
=
2
2
,即cos∠OPM的最小值為
2
2

當點P在x軸時,∠OPM=0,cos∠OPM=1.
故答案為:[
2
2
,1]
點評:本題考查向量夾角求解,函數(shù)思想,數(shù)形結(jié)合思想,關(guān)鍵是建立函數(shù)關(guān)系式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P是直角坐標平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是直角坐標平面內(nèi)的動點,點P到直線x=-
p
2
-1
(p是正常數(shù))的距離為d1,到點F(
p
2
,0)
的距離為d2,且d1-d2=1.(1)求動點P所在曲線C的方程;
(2)直線l 過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線l1:x=-
p
2
的垂線,對應的垂足分別為M、N,求證=
FM
FN
=0

(3)記S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的點),λ=
S
2
2
S1S3
,求λ 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是直角坐標平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使
S
2
2
S1S3
成立.若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是直角坐標平面內(nèi)的動點,點P到直線x=-
p
2
-1
(p是正常數(shù))的距離為d1,到點F(
p
2
,0)
的距離為d2,且d1-d2=1.
(1)求動點p所在曲線C的方程
(2)直線l過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線l1:x=-
p
2
的垂線,對應的垂足分別為M、N,求證:FM⊥FN.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三第五次月考理科數(shù)學 題型:解答題

已知點P是直角坐標平面內(nèi)的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且

(1)    求動點P所在曲線C的方程;

(2)    直線過點F且與曲線C交于不同兩點AB(點AB不在x軸上),分別過AB點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)    記(AB、是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.

 

 

查看答案和解析>>

同步練習冊答案