已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線的距離為d1,到點F(– 1,0)的距離為d2,且

(1)    求動點P所在曲線C的方程;

(2)    直線過點F且與曲線C交于不同兩點A、B(點AB不在x軸上),分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,試判斷點F與以線段為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);

(3)    記,,(A、B是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.

 

 

【答案】

20.(1) 設(shè)動點為 

依據(jù)題意,有,化簡得

即為動點P所在曲線C的方程!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ 3分

(2) 點F在以MN為直徑的圓的外部.

理由:由題意可知,當(dāng)過點F的直線的斜率為0時,不合題意,故可設(shè)直線,如圖所示.聯(lián)立方程組,可化為,則點、的坐標(biāo)滿足

,可得點、

,則=

于是,為銳角,即點F在以MN為直徑的圓的外部.······················· 10分

(3) 依據(jù) (2) 可算出,,

所以,,即存在實數(shù)使得結(jié)論成立.······························· 12分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進(jìn)一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線x=-
p
2
-1
(p是正常數(shù))的距離為d1,到點F(
p
2
,0)
的距離為d2,且d1-d2=1.(1)求動點P所在曲線C的方程;
(2)直線l 過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線l1:x=-
p
2
的垂線,對應(yīng)的垂足分別為M、N,求證=
FM
FN
=0

(3)記S1=S△FAM,S2=S△FMN,S3=S△FEN(A、B、M、N是(2)中的點),λ=
S
2
2
S1S3
,求λ 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數(shù)λ,使
S
2
2
S1S3
成立.若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是直角坐標(biāo)平面內(nèi)的動點,點P到直線x=-
p
2
-1
(p是正常數(shù))的距離為d1,到點F(
p
2
,0)
的距離為d2,且d1-d2=1.
(1)求動點p所在曲線C的方程
(2)直線l過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線l1:x=-
p
2
的垂線,對應(yīng)的垂足分別為M、N,求證:FM⊥FN.

查看答案和解析>>

同步練習(xí)冊答案