【題目】設(shè)橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。
【答案】(1);(2)6
【解析】分析:(1)根據(jù)題意,結(jié)合橢圓的定義可得a的值,由離心率公式可得c的值,計算可得b的值,將a、b的值代入橢圓的方程即可得答案;
(2)設(shè)A(x1,y1),B(x2,y2)以及AB的方程,將AB的方程與橢圓聯(lián)立,分析可得3(my+1)2+4y2=12,借助根與系數(shù)的關(guān)系可以將四邊形AMBF1面積用k表示出來,由基本不等式的性質(zhì)分析可得答案.
詳解:(1)依題意,,
因為,所以,所以橢圓方程為;
(2)設(shè) ,則由,可得,
即,,,
又因為,所以四邊形是平行四邊形,
設(shè)平面四邊形的面積為,則設(shè),則,所以,因為, 所以,所以,所以四邊形面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點,,為橢圓上的動點,,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2 . (I)記 .
(i)討論函數(shù)F(x)單調(diào)性;
(ii)證明當m>0時,F(xiàn)(﹣1+m)>F(﹣1﹣m)恒成立;
(II)令G(x)=af(x)+g(x)(a∈R),設(shè)函數(shù)G(x)有兩個零點,求參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,,底面,,直線與底面所成的角為,分別是的中點.
(1)求證:直線平面;
(2)若,求證:直線平面;
(3)若,求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐中,過點的三條棱PA、AB、AD兩兩垂直且相等,E,F(xiàn)分別是AC,PB的中點.
(Ⅰ)證明:EF//平面PCD;
(Ⅱ)求EF與平面PAC所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B,經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,且滿足Sn﹣2an=n﹣4.
(1)證明{Sn﹣n+2}為等比數(shù)列;
(2)設(shè)數(shù)列{Sn}的前n項和Tn , 比較Tn與2n+2﹣5n的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,將△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求證:CD⊥A′B;
(Ⅱ)試在線段A′C上確定一點P,使得二面角P﹣BD﹣C的大小為45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com