【題目】已知橢圓,長(zhǎng)軸長(zhǎng)為4,分別為橢圓的左,右焦點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),面積的最大為,且取得最大值時(shí)為鈍角.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知圓,點(diǎn)為圓上任意一點(diǎn),過(guò)點(diǎn)的切線(xiàn)分別交橢圓兩點(diǎn),且,求的值.

【答案】1 2

【解析】

(1)由條件,當(dāng)點(diǎn)在短軸的端點(diǎn)時(shí),的面積最大得,又當(dāng)的面積取得最大值時(shí)為鈍角得 ,可解出橢圓方程.

(2)分切線(xiàn)的斜率存在和不存在兩種情況計(jì)算,由,即 方程聯(lián)立代入結(jié)合直線(xiàn)與圓相切計(jì)算可得答案.

(1)設(shè)短軸的端點(diǎn)分別為.

由橢圓的長(zhǎng)軸為4,則.

當(dāng)點(diǎn)在短軸的端點(diǎn)時(shí),的面積最大,則 ……

當(dāng)的面積取得最大值時(shí)為鈍角.

,所以,即……………

………

解得:

所以橢圓方程為:.

(2)設(shè)圓上過(guò)點(diǎn)的切線(xiàn)為直線(xiàn) .

當(dāng)直線(xiàn)的斜率不存在時(shí), ,則

,即,解得:.

當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)

由直線(xiàn)與圓相切得:即:.

設(shè)

得:

,即

所以,即

所以

,則.

.

所以.

綜上所述的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為菱形,平面、分別是、上的中點(diǎn),直線(xiàn)與平面所成角的正弦值為點(diǎn)上移動(dòng).

(Ⅰ)證明:無(wú)論點(diǎn)上如何移動(dòng),都有平面平面

(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行雙12有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)168元的商品后即可抽獎(jiǎng),抽獎(jiǎng)方法是:從裝有2個(gè)紅球1個(gè)白球的甲箱與裝有2個(gè)紅球1個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,這些球除顏色,標(biāo)號(hào)外都一樣.若摸出的2個(gè)球顏色相同則中獎(jiǎng),否則不中獎(jiǎng).

1)用球的標(biāo)號(hào)列出所有可能的摸出結(jié)果;

2)小明根據(jù)經(jīng)驗(yàn)認(rèn)為:摸到同色球一般來(lái)說(shuō)更為難得,所以猜測(cè)中獎(jiǎng)的概率小于不中獎(jiǎng)的概率,你認(rèn)為小明的猜想正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的方程為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線(xiàn)與曲線(xiàn)交于點(diǎn).

1)求曲線(xiàn)的參數(shù)方程,的極坐標(biāo)方程;

2)若,是曲線(xiàn)上的兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足:,其中為實(shí)數(shù),為正整數(shù).

1)對(duì)任意實(shí)數(shù),求證:不成等比數(shù)列;

2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩陣,B

1 AB;

2 若曲線(xiàn)C1在矩陣AB對(duì)應(yīng)的變換作用下得到另一曲線(xiàn)C2,求C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),解不等式

2)已知是以2為周期的偶函數(shù),且當(dāng)時(shí),有.,且,求函數(shù)的反函數(shù);

3)若在上存在個(gè)不同的點(diǎn),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著改革開(kāi)放的不斷深入,祖國(guó)不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,201911日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專(zhuān)項(xiàng)附加扣除;(3)專(zhuān)項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:

級(jí)數(shù)

一級(jí)

二級(jí)

三級(jí)

四級(jí)

每月應(yīng)納稅所得額(含稅)

不超過(guò)3000元的部分

超過(guò)3000元至12000元的部分

超過(guò)12000元至25000元的部分

超過(guò)25000元至35000元的部分

稅率

3

10

20

25

1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無(wú)其它專(zhuān)項(xiàng)附加扣除.請(qǐng)問(wèn)李某月應(yīng)繳納的個(gè)稅金額為多少?

2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過(guò)整理資料可知,有一個(gè)孩子的有400人,沒(méi)有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒(méi)有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專(zhuān)項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類(lèi)人群繳納個(gè)稅金額的分布列與期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案