【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
【答案】(1)(2)見(jiàn)解析
【解析】
(1)討論研究函數(shù)的單調(diào)性,求出函數(shù)在上的最大值.要不等式恒成立,只需最大值小于零,即可求出.
(2)將原不等式等價(jià)變形為,由(1)可知,試證在時(shí)恒成立,即可由不等式性質(zhì)證出.
(1)由題意得
設(shè),則,
①當(dāng)時(shí),即時(shí), ,
所以函數(shù)在上單調(diào)遞增,,滿足題意;
②當(dāng)時(shí),即時(shí),則的圖象的對(duì)稱(chēng)軸
因?yàn)?/span>,
所以在上存在唯一實(shí)根,設(shè)為,則當(dāng)時(shí),,
當(dāng)時(shí),,
所以在上單調(diào)遞增,在上單調(diào)遞減,
此時(shí),不合題意.
綜上可得,實(shí)數(shù)的取值范圍是.
(2)等價(jià)于
因?yàn)?/span>,所以,所以原不等式等價(jià)于,
由(1)知當(dāng)時(shí),在上恒成立,整理得
令,則,
所以函數(shù)在區(qū)間上單調(diào)遞增,
所以,即在上恒成立.
所以,當(dāng)時(shí),恒有,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車(chē)產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國(guó)某地區(qū)新能源乘用車(chē)的年銷(xiāo)售量與年份的統(tǒng)計(jì)表:
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車(chē)車(chē)主的性別與購(gòu)車(chē)種類(lèi)情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
(1)求新能源乘用車(chē)的銷(xiāo)量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購(gòu)車(chē)車(chē)主是否購(gòu)置新能源乘用車(chē)與性別有關(guān);
(3)若以這30名購(gòu)車(chē)車(chē)主中購(gòu)置新能源乘用車(chē)的車(chē)主性別比例作為該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主性別比例,從該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主中隨機(jī)選取50人,記選到女性車(chē)主的人數(shù)為,求的數(shù)學(xué)期望與方差.
參考公式:
,,其中.,若,則可判斷與線性相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與拋物線:交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).
(1)求的方程;
(2)直線經(jīng)過(guò)的焦點(diǎn)且不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為矩形,平面平面,為中點(diǎn),.
(1)求證:;
(2)若與平面所成的角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃用兩張鐵絲網(wǎng)在一片空地上圍成一個(gè)梯形養(yǎng)雞場(chǎng),,,已知兩段是由長(zhǎng)為的鐵絲網(wǎng)折成,兩段是由長(zhǎng)為的鐵絲網(wǎng)折成.設(shè)上底的長(zhǎng)為,所圍成的梯形面積為.
(1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;
(2)當(dāng)x為何值時(shí),養(yǎng)雞場(chǎng)的面積最大?最大面積為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,為等腰直角三角形,為等邊三角形,其中O為BC中點(diǎn),且.
(1)求證:平面平面PBC;
(2)若且平面EBC,其中E為AP上的點(diǎn),求CE與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)作直線交于,兩點(diǎn),、分別交直線于,兩點(diǎn).
(1)求的方程和焦點(diǎn)坐標(biāo);
(2)設(shè),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)僅有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com