精英家教網 > 高中數學 > 題目詳情

【題目】隨著互聯網技術的快速發(fā)展,人們更加關注如何高效地獲取有價值的信息,網絡知識付費近兩年呈現出爆發(fā)式的增長,為了了解網民對網絡知識付費的態(tài)度,某網站隨機抽查了歲及以上不足歲的網民共人,調查結果如下:

(1)請完成上面的列聯表,并判斷在犯錯誤的概率不超過的前提下,能否認為網民對網絡知識付費的態(tài)度與年齡有關?

(2)在上述樣本中用分層抽樣的方法,從支持和反對網絡知識付費的兩組網民中抽取名,若在上述名網民中隨機選人,設這人中反對態(tài)度的人數為隨機變量,求的分布列和數學期望.

附: , .

【答案】(1) 在犯錯誤的概率不超過的前提下,可以認為網民對網絡知識付費的態(tài)度與年齡有關.

(2)

【解析】試題分析:(1)先根據數據填表,再代入卡方公式求,最后與參考數據比較作判斷,(2)先根據分層抽樣確定人數,確定隨機變量取法,再利用組合數計算對應概率,列表可得分布列,最后根據數學期望公式求期望.

試題解析:(1)列聯表如下:

支持

反對

合計

不足

歲及以上

合計

所以在犯錯誤的概率不超過的前提下,可以認為網民對網絡知識付費的態(tài)度與年齡有關.

(2)易知抽取的人中,有人支持, 人反對.

的可能取值為, ,且

,

的分布列為

的數學期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】是定義在上的函數,若存在,使得單調遞增,在上單調遞減,則稱上的單峰函數,為峰點,包含峰點的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長度為:

(1)判斷下列函數中,哪些是“上的單峰函數”?若是,指出峰點;若不是,說出原因;;

(2)若函數上的單峰函數,求實數的取值范圍;

(3)若函數是區(qū)間上的單峰函數,證明:對于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當滿足何種條件時,所確定的含峰區(qū)間的長度不大于0.6.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解男性家長和女性家長對高中學生成人禮儀式的接受程度,某中學團委以問卷形式調查了位家長,得到如下統(tǒng)計表:

男性家長

女性家長

合計

贊成

無所謂

合計

(1)據此樣本,能否有的把握認為“接受程度”與家長性別有關?說明理由;

(2)學校決定從男性家長中按分層抽樣方法選出人參加今年的高中學生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..

參考數據

參考公式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖是改革開放四十周年大型展覽的展館--------國家博物館.現欲測量博物館正門柱樓頂部一點離地面的高度(點在柱樓底部).在地面上的兩點測得點的仰角分別為,,且,米,則為( )

A. 10米 B. 20米 C. 30米 D. 40米

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、是橢圓)的左、右焦點,過軸的垂線與交于、

兩點, 軸交于點, ,且 為坐標原點.

(1)求的方程;

(2)設為橢圓上任一異于頂點的點, 、的上、下頂點,直線分別交軸于點.若直線與過點、的圓切于點.試問: 是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經成為人們越來越關注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調查,將調查情況進行整理后制成下表:

年齡

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人數

4

5

8

5

3

年齡

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人數

6

7

3

5

4

經調查年齡在[25,30),[55,60)的被調查者中贊成“延遲退休”的人數分別是3人和2人.現從這兩組的被調查者中各隨機選取2人,進行跟蹤調查.

(I)求年齡在[25,30)的被調查者中選取的2人都贊成“延遲退休”的概率;

(II)若選中的4人中,不贊成“延遲退休”的人數為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1ab>0)與雙曲線 C2x2有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點,若C1恰好將線段AB三等分,則橢圓C1的離心率為 ( 。

A. e2 B. e2 C. e2 D. e2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,直線的斜率為,直線的斜率為,且.

(1)求點的軌跡的方程;

(2),,連接并延長,與軌跡交于另一點,點中點,是坐標原點,的面積之和為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:min)進行調查,將收集到的數據分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六組,并作出頻率分布直方圖(如圖).將日均課外體育鍛煉時間不低于40 min的學生評價為課外體育達標.

(1)請根據頻率分布直方圖中的數據填寫下面的2×2列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為課外體育達標與性別有關?

課外體育不達標

課外體育達標

總計

60

   

 

   

   

110

總計

   

   

 

(2)現從課外體育達標學生中按分層抽樣抽取5,再從這5名學生中隨機抽取2人參加體育知識問卷調查,求抽取的這2人課外體育鍛煉時間都在[40,50)內的概率.

附參考公式與數據:K2=

P(K2k0)

0.10

0.05

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案