【題目】已知函數(shù) .
(1)當(dāng)a=1時(shí),x0∈[1,e]使不等式f(x0)≤m,求實(shí)數(shù)m的取值范圍;
(2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=1時(shí), ,
可知當(dāng)x∈[1,e]時(shí)f(x)為增函數(shù),
最小值為 ,
要使x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,
故實(shí)數(shù)m的取值范圍是
(2)解:已知函數(shù) .
若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,
等價(jià)于對(duì)任意x∈(1,+∞),f(x)<2ax,
即 恒成立.
設(shè) .
即g(x)的最大值小于0.
①當(dāng) 時(shí), ,
∴ 為減函數(shù).
∴g(1)=﹣a﹣ ≤0
∴a≥﹣
∴
②a≥1時(shí), .
為增函數(shù),
g(x)無(wú)最大值,即最大值可無(wú)窮大,故此時(shí)不滿足條件.
③當(dāng) 時(shí),g(x)在 上為減函數(shù),在 上為增函數(shù),
同樣最大值可無(wú)窮大,不滿足題意.綜上.實(shí)數(shù)a的取值范圍是
【解析】(1)將a的值代入f(x),求出f(x)的導(dǎo)函數(shù);,將x0∈[1,e]使不等式f(x0)≤m轉(zhuǎn)化為f(x)的最小值小于等于m,利用[1,e]上的函數(shù)遞增,求出f(x)的最小值,令最小值小于等于m即可.(2)將圖象的位置關(guān)系轉(zhuǎn)化為不等式恒成立;通過(guò)構(gòu)造函數(shù),對(duì)新函數(shù)求導(dǎo),對(duì)導(dǎo)函數(shù)的根與區(qū)間的關(guān)系進(jìn)行討論,求出新函數(shù)的最值,求出a的范圍.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (β為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)將曲線C1的方程化為極坐標(biāo)方程;
(Ⅱ)已知直線l的參數(shù)方程為 ( <α<π,t為參數(shù),t≠0),l與C1交與點(diǎn)A,l與C2交與點(diǎn)B,且|AB|= ,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(x+1)= + ,則f(0)+f(2017)的最大值為( )
A.1﹣
B.1+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程 為ρsin(θ+ )=1,圓C的圓心是C(1, ),半徑為1,求:
(1)圓C的極坐標(biāo)方程;
(2)直線l被圓C所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.則△ABC中最大角的度數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)( )
A.在區(qū)間[ , ]上單調(diào)遞增
B.在區(qū)間[ , ]上單調(diào)遞減
C.在區(qū)間[﹣ , ]上單調(diào)遞增
D.在區(qū)間[﹣ , ]上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二孩放開(kāi)”政策的熱度,現(xiàn)在對(duì)某市年齡在35歲的人調(diào)查,隨機(jī)選取年齡在35歲的100人進(jìn)行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“支持生二孩與性別有關(guān)”?
支持生二孩 | 不支持生二孩 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡(jiǎn)單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計(jì)總體,從年齡在35歲人中隨機(jī)抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義1:若函數(shù)f(x)在區(qū)間D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在區(qū)間D上也可導(dǎo),則稱函數(shù)f(x)在區(qū)間D上的存在二階導(dǎo)數(shù),記作f″(x)=[f′(x)]′. 定義2:若函數(shù)f(x)在區(qū)間D上的二階導(dǎo)數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3﹣ x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com