在△ABC中,∠A、∠B、∠C所對的邊長分別為a、b、c,其中a=4,b=3,∠C=60°,則△ABC的面積為(  )
A、3
B、3
3
C、6
D、6
3
考點:三角形的面積公式,正弦定理,余弦定理
專題:解三角形
分析:利用三角形面積公式列出關系式,把a,b,sinC的值代入計算即可.
解答: 解:∵△ABC中,a=4,b=3,∠C=60°,
∴S△ABC=
1
2
absinC=3
3
,
故選:B.
點評:此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握面積公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

閱讀下列程序則該程序對應的程序框圖(如圖)中,①,②兩個判斷框內要填寫的內容分別是( 。
A、x>0?x<0?
B、x>0?x=0
C、x<0?x=0
D、x≥0? x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,有三個并排放在一起的正方形,∠AGB=α,∠AFB=β.
(1)求α+β的度數(shù);
(2)求函數(shù)y=sin2x+
3
sinxcosx-1的最大值及取得最大值時候的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式x+
a
x-1
≥5在x∈(1,+∞)恒成立,則正數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的數(shù)f(x)=-
1
2
+
b
2x+1
是奇函數(shù)
(1)求b的值;
(2)若對任意的t∈R,不等式f(t2-t)+f(t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>1,定義f(n)=
1
n+1
+
1
n+2
+…+
1
2n
,如果對任意的n∈N*且n≥2,不等式12f(n)+7logab>7+7loga+1b恒成立,則實數(shù)b的取值范圍是( 。
A、(2,
29
17
)
B、(0,1)
C、(0,4)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={0,1,2,3,4,5},集合A={1,2,3,4},B={2,4},則(∁UA)∪B=(  )
A、{1,2,4}
B、{2,3,4}
C、{0,2,4,5}
D、{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-9x+3x+1+4.
(1)求函數(shù)f(x)的零點;
(2)當x∈[0,1]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)x>0,n∈N*,e是自然對數(shù)的底數(shù).
(1)證明:(1-x)ex<1<ex-x;
(2)若數(shù)列{an}滿足:an>0且ean+1=ean-1,證明:{an}在定義域內是遞減數(shù)列.

查看答案和解析>>

同步練習冊答案