已知全集U={0,1,2,3,4,5},集合A={1,2,3,4},B={2,4},則(∁UA)∪B=( 。
A、{1,2,4}
B、{2,3,4}
C、{0,2,4,5}
D、{0,2,3,4}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:根據(jù)全集U求出A的補(bǔ)集,找出A補(bǔ)集與B的并集即可.
解答: 解:∵全集U={0,1,2,3,4,5},集合A={1,2,3,4},
∴∁UA={0,5},
∵B={2,4},
則(∁UA)∪B={0,2,4,5}.
故選:C.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是矩形,K為矩形所在平面上一點(diǎn),連接KA與KD均與邊BC相交.由點(diǎn)B向直線DK引垂線,由C向直線AK引垂線,兩垂線相交于點(diǎn)M.求證:MK⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“數(shù)列{an}(n∈N*)滿足an+1=an•q(其中q為常數(shù))”是“數(shù)列{an}(n∈N*)是等比數(shù)列”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長分別為a、b、c,其中a=4,b=3,∠C=60°,則△ABC的面積為( 。
A、3
B、3
3
C、6
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,點(diǎn)A(1,1),點(diǎn)B(4,2),點(diǎn)C(-4,6).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)對(duì)于任意實(shí)數(shù)x恒有2f(x)-f(-x)=3x+1,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,周期為π,且在[0,
π
2
]上為減函數(shù)的是( 。
A、y=sin(2x+
π
2
B、y=cos(2x+
π
2
C、y=sin(x+
π
2
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足,且(
3
-3i)z=6i,則z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,已知橢圓C:
x2
24
+
y2
12
=1設(shè)R(x0,y0)是橢圓C上任意一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8做兩條切線,分別交橢圓于P、Q.
(1)若直線OP、OQ互相垂直,求圓R的方程;
(2)若直線OP、OQ的斜率存在并記為k1、k2,求證:2k1k2+1=0;
(3)試問:OP2+OQ2是否為定值?若是,請(qǐng)求值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案