【題目】已知圓,點(diǎn)為直線上一動(dòng)點(diǎn),過(guò)點(diǎn)P引圓M的兩條切線,切點(diǎn)分別為AB.

1)若P的坐標(biāo)為,求切線方程;

2)求四邊形PAMB面積的最小值.

【答案】;

【解析】

由題意知切線的斜率存在,設(shè)切線方程為,由圓心到直線的距離等于半徑求出斜率,代入切線方程即可;

設(shè)四邊形PAMB面積為,結(jié)合題意知,,求出切線長(zhǎng)的最小值即可,結(jié)合勾股定理知,,即求線段的最小值,由點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn)知,當(dāng)線段與直線垂直時(shí),取最小值,利用點(diǎn)到直線的距離公式求出的最小值即可.

由題意知切線的斜率存在,設(shè)切線方程為,

由點(diǎn)到直線的距離公式可得,點(diǎn)到直線的距離為

,解得,

所以所求的切線方程為;

設(shè)四邊形PAMB面積為,因?yàn)?/span>為圓的切線,

所以,,

因?yàn)?/span>,所以,

即當(dāng)取最小值時(shí)四邊形PAMB面積取得最小值,

因?yàn)?/span>,

所以當(dāng)取最小值時(shí)取最小值,

因?yàn)辄c(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),

所以當(dāng)線段與直線垂直時(shí),取最小值,

由點(diǎn)到直線的距離公式可得,

的最小值為,

此時(shí)取最小值為,

所以四邊形PAMB面積的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

1)求每件產(chǎn)品的平均銷售利潤(rùn);

2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.

表中,

根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用(萬(wàn)元)的回歸方程.

①求關(guān)于的回歸方程;

②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)營(yíng)銷費(fèi)用,取

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB//CD,ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCDEF//BD,且BD2EF

Ⅰ)求證:平面ADE⊥平面BDEF

Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地自2014年至2019年每年年初統(tǒng)計(jì)所得的人口數(shù)量如表所示:

年份

2014

2015

2016

2017

2018

2019

人數(shù)(單位:千人)

2082

2135

2203

2276

2339

2385

1)根據(jù)表中的數(shù)據(jù)判斷從2014年到2019年哪個(gè)跨年度的人口增長(zhǎng)數(shù)量最大?并描述該地人口數(shù)量的變化趨勢(shì);

2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年年初對(duì)應(yīng)時(shí)刻,的單位是千人,經(jīng)計(jì)算可得,請(qǐng)解釋的實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線的極坐標(biāo)方程為(常數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程和的普通方程;

2)若曲線,有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形,為直角,平面,,且.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中數(shù)學(xué)靠練,高中數(shù)學(xué)靠悟”.總結(jié)反思自己已經(jīng)成為數(shù)學(xué)學(xué)習(xí)中不可或缺的一部分,為了了解總結(jié)反思對(duì)學(xué)生數(shù)學(xué)成績(jī)的影響,某校隨機(jī)抽取200名學(xué)生,抽到不善于總結(jié)反思的學(xué)生概率是0.6.

1)完成列聯(lián)表(應(yīng)適當(dāng)寫出計(jì)算過(guò)程);

2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)成績(jī)與善于總結(jié)反思有關(guān).

統(tǒng)計(jì)數(shù)據(jù)如下表所示:

不善于總結(jié)反思

善于總結(jié)反思

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

40

學(xué)習(xí)成績(jī)一般

20

合計(jì)

200

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.

1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.

2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.

i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);

ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.

可能用到的參考數(shù)據(jù):取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于正整數(shù),如果個(gè)整數(shù)滿足

,則稱數(shù)組的一個(gè)正整數(shù)分拆”.均為偶數(shù)的正整數(shù)分拆的個(gè)數(shù)為均為奇數(shù)的正整數(shù)分拆的個(gè)數(shù)為.

()寫出整數(shù)4的所有正整數(shù)分拆”;

()對(duì)于給定的整數(shù),設(shè)的一個(gè)正整數(shù)分拆,且,求的最大值;

()對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.

(:對(duì)于的兩個(gè)正整數(shù)分拆,當(dāng)且僅當(dāng)時(shí),稱這兩個(gè)正整數(shù)分拆是相同的.)

查看答案和解析>>

同步練習(xí)冊(cè)答案