【題目】如圖,已知四棱錐的底面為直角梯形,為直角,平面,,且.

1)求證:;

2)若,求二面角的余弦值.

【答案】(1)證明見解析(2)

【解析】

1)根據(jù)平面,得到,根據(jù)勾股定理得到,從而得到平面,再得到;(2)以A為原點,建立空間直角坐標系,得到平面的法向量,平面的法向量,根據(jù)向量夾角公式,從而得到求二面角的余弦值.

解:(1)證明:∵平面

平面,∴.

,且

,

,即.

平面

平面.

平面,

.

2)如圖,過點A垂直于點F,由(1)知,.

,

兩兩垂直,

∴以A為坐標原點,所在直線分別為x軸、y軸、z軸,

建立空間直角坐標系,

,

.

設平面的法向量,

∴取.

設平面的法向量,

∴取.

設二面角的平面角為,

,

由圖可知二面角為鈍角,

∴二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從2013年開始,國家教育部要求高中階段每學年都要組織學生進行學生體質健康測試,方案要求以學校為單位組織實施,某校對高一(1)班學生根據(jù)《國家學生體質健康標準》的測試項目按百分制進行了預備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖.所示,已知[90,100]分數(shù)段的人數(shù)為2.

(1)求[70,80)分數(shù)段的人數(shù);

(2)現(xiàn)根據(jù)預備測試成績從成績在80分以上(含80分)的學生中任意選出2人代表班級參加學校舉行的一項體育比賽,求這2人的成績一個在[80,90)分數(shù)段、一個在[90,100]分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網行業(yè)崗位分布條形圖,則下列結論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的

C.互聯(lián)網行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網行業(yè)中從事技術崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,.

1)求證:平面;

2)求四棱錐的最長側棱的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點為直線上一動點,過點P引圓M的兩條切線,切點分別為A,B.

1)若P的坐標為,求切線方程;

2)求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,其中a,

的極大值;

,,若對任意的,恒成立,求a的最大值;

,若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,真命題的個數(shù)是 ( 。

①命題:“已知 ,“”是“”的充分不必要條件”;

②命題:“p且q為真”是“p或q為真”的必要不充分條件;

③命題:已知冪函數(shù)的圖象經過點(2,),則f(4)的值等于;

④命題:若,則

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.

1)求橢圓的方程;

2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過作斜率為的直線交曲線,兩點,

①若,求直線的方程;

②過,兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.

查看答案和解析>>

同步練習冊答案