【題目】大慶實驗中學在高二年級舉辦線上數(shù)學知識競賽,在已報名的400名學生中,根據(jù)文理學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學成績的中位數(shù)和眾數(shù);
(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分數(shù)不小于70,且樣本中分數(shù)不小于70的文理科生人數(shù)相等.試估計總體中理科生和文科生人數(shù)的比例.
【答案】(1)中位數(shù)72.5,眾數(shù)75;(2)20人;(3)3:2
【解析】
(1)由頻率分布直方圖知,樣本中分數(shù)低于50分的頻率為0.1,可以估計中位數(shù)為:,眾數(shù)則由直方圖即可得出;
(2)由(1)得樣本中分數(shù)低于50分的頻率為0.1,可求出樣本中分數(shù)低于50分的人數(shù),而樣本中分數(shù)小于40的學生有5人,即可求出樣本中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù),進而可估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)根據(jù)頻率分布直方圖,得出樣本中分數(shù)不小于70的人數(shù)為:人,結合題中條件,即可求出100個樣本中理科生人數(shù)為60人,女生人數(shù)為40人,最后根據(jù)分層抽樣的原理,即可估計總體中理科生和文科生人數(shù)的比例.
解:(1)由頻率分布直方圖知,樣本中分數(shù)低于50分的頻率為:
,
在[50,60),[60,70),[70,80),[80,90]的頻率分別為:0.1,0.2,0.4,0.2,
觀察可知,中位數(shù)位于[70,80]內(nèi),
則可以估計中位數(shù)為:,
則眾數(shù)為:.
(2)由(1)得樣本中分數(shù)低于50分的頻率為0.1,
所以樣本中分數(shù)低于50分的人數(shù)為:人,
而樣本中分數(shù)小于40的學生有5人,
所以樣本中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù)為:10-5=5人,
根據(jù)分層抽樣,可估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù)為:人.
(3)根據(jù)題意,樣本中分數(shù)不小于70的人數(shù)為:人,
而樣本中分數(shù)不小于70的文理科生人數(shù)相等,
則樣本中分數(shù)不小于70的文科人數(shù)為30人,理科人數(shù)為30人,
而樣本中有一半理科生的分數(shù)不小于70,
則100個樣本中理科生人數(shù)為:人,文科人數(shù)為40人,
根據(jù)分層抽樣的原理,可估計出總體中理科生和文科生人數(shù)的比例為:60:40=3:2.
科目:高中數(shù)學 來源: 題型:
【題目】2017年是某市大力推進居民生活垃圾分類的關鍵一年,有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識”的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖所示:
(Ⅰ)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);
(Ⅱ)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的條件下,有關部門為此次參加問卷調(diào)査的市民制定如下獎勵方案:
(i)得分不低于μ可獲贈2次隨機話費,得分低于μ則只有1次;
(ii)每次贈送的隨機話費和對應概率如下:
贈送話費(單元:元) | 10 | 20 |
概率 |
現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加.問卷調(diào)查獲贈的話費,求X的分布列和數(shù)學期望.
附: ,
若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知兩點, ,動點滿足,線段的中垂線交線段于點.
(1)求點的軌跡的方程;
(2)過點的直線與軌跡相交于兩點,設點,直線的斜率分別為,問是否為定值?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (其中為常數(shù)且)在處取得極值.
(1)當時,求的極大值點和極小值點;
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線: 的焦點,過點作兩條互相垂直的直線,直線交于不同的兩點,直線交于不同的兩點,記直線的斜率為.
(1)求的取值范圍;
(2)設線段的中點分別為點,求證: 為鈍角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:,點在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.
若,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;
是否存在定點M,使得不論直線l繞點M如何轉(zhuǎn)動,恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數(shù)各一題,讓各位同學自由選擇一道題進行解答,統(tǒng)計情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男 同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?
(2)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對他們的答題進行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體中,,,,分別是,,,的中點.
(Ⅰ)求證:,,,四點共面;
(Ⅱ)求證:平面∥平面;
(Ⅲ)畫出平面與正方體側面的交線(需要有必要的作圖說明、保留作圖痕跡).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com