【題目】已知,命題:對,不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當時,若假, 為真,求的取值范圍.
【答案】(1) 1≤m≤2.(2) (﹣∞,1)∪(1,2].
【解析】試題分析:本題主要考查簡易邏輯,恒成立問題,不等式的解法.(1)由題意得出,然后解不等式即可.(2)由題意得出,再根據(jù)p且q為假,p或q為真,得出p與q必然一真一假,即可解答.
試題解析:
(1)設(shè),則在[0,1]上單調(diào)遞增,
∴.
∵對任意x∈[0,1],不等式2x﹣2≥m2﹣3m恒成立,
∴,即,
解得1≤m≤2.
∴的取值范圍為.
(2)a=1時, 區(qū)間[﹣1,1]上單調(diào)遞增,
∴.
∵存在x∈[﹣1,1],使得m≤ax成立,
∴m≤1.
∵假, 為真,
∴p與q一真一假,
①當p真q假時,
可得,解得1<m≤2;
②當p假q真時,
可得,解得.
綜上可得1<m≤2或m<1.
∴實數(shù)m的取值范圍是(﹣∞,1)∪(1,2].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在定義域上是增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若,令,試討論函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)的年平均濃度不得超過3S微克/立方米, 的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機抽取了一居民區(qū)2016年20天的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(ⅰ)求圖中的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)當時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與雙曲線的漸近線交于兩點,設(shè)為雙曲線上任一點,若為坐標原點),則下列不等式恒成立的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛木蘭溪,保護母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:
南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;
(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;
(Ⅲ)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結(jié)果分析兩岸環(huán)保情況,哪邊保護更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓G: 的離心率為,過橢圓G右焦點F的直線m:x=1與橢圓G交于點M(點M在第一象限).
(Ⅰ)求橢圓G的方程;
(Ⅱ)已知A為橢圓G的左頂點,平行于AM的直線l與橢圓G相交于B,C兩點,請判斷直線MB,MC是否關(guān)于直線m對稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E: (a>0,b>0)的漸近線方程為3x±4y=0,且過焦點垂直x軸的直線與雙曲線E相交弦長為,過雙曲線E中心的直線與雙曲線E交于A,B兩點,在雙曲線E上取一點C(與A,B不重合),直線AC,BC 的斜率分別為k1,k2,則k1k2等于( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com