【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
記x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元),n表示購機的同時購買的易損零件數(shù).
(1)若n=19,求y與x的函數(shù)解析式;
(2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買19個還是20個易損零件?
【答案】
(1)
解:當n=19時,
y= =
(2)
解:由柱狀圖知,更換的易損零件數(shù)為16個頻率為0.06,
更換的易損零件數(shù)為17個頻率為0.16,
更換的易損零件數(shù)為18個頻率為0.24,
更換的易損零件數(shù)為19個頻率為0.24
又∵更換易損零件不大于n的頻率為不小于0.5.
則n≥19
∴n的最小值為19件
(3)
解:假設(shè)這100臺機器在購機的同時每臺都購買19個易損零件,
所須費用平均數(shù)為: (70×19×200+4300×20+4800×10)=4000(元)
假設(shè)這100臺機器在購機的同時每臺都購買20個易損零件,
所須費用平均數(shù)為 (90×4000+10×4500)=4050(元)
∵4000<4050
∴購買1臺機器的同時應(yīng)購買19臺易損零件
【解析】(1)若n=19,結(jié)合題意,可得y與x的分段函數(shù)解析式;(2)由柱狀圖分別求出各組的頻率,結(jié)合“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,可得n的最小值;(3)分別求出每臺都購買19個易損零件,或每臺都購買20個易損零件時的平均費用,比較后,可得答案.;本題考查的知識點是分段函數(shù)的應(yīng)用,頻率分布條形圖,方案選擇,難度中檔.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義和頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時,f(x)=
(1)求f(-2);
(2)當x<-3時,求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+(2a+1)x+a2+3a(a∈R).
(Ⅰ)若函數(shù)f(x)在[0,2]上單調(diào),求a的取值范圍;
(Ⅱ)若f(x)在閉區(qū)間[m,n]上單調(diào)遞增(其中m≠n),且{y|y=f(x),m≤x≤n}=[m,n],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級某次數(shù)學競賽隨機抽取100名學生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計后得到頻率分布直方圖如圖所示:
(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調(diào)研小組,對高一年級學生課外學習數(shù)學的情況做一個調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當選為正、副小組長的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過點.
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;
(3)若為偶函數(shù),求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線與的直角坐標方程;
(2)當與有兩個公共點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直線坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(2)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.
(1)判斷f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函數(shù)”,哪些不是,并說明理由;
(2)若函數(shù)g(x)=lnx(x∈[M,+∞))是“保三角形函數(shù)”,求M的最小值;
(3)若函數(shù)h(x)=sinx(x∈(0,A))是“保三角形函數(shù)”,求A的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com