二次函數(shù)f(x)的二次項(xiàng)系數(shù)為正數(shù),且對(duì)任意xÎR都有f(x)=f(4-x)成立,
若f(2-a2)<f(1+a-a2),那么a的取值范圍是                        (     )
A.1<a<2B.a(chǎn)>1C.a(chǎn)>2D.a(chǎn)<1
D

試題分析:因?yàn),二次函?shù)f(x)的二次項(xiàng)系數(shù)為正數(shù),且對(duì)任意xÎR都有f(x)=f(4-x)成立,所以二次函數(shù)圖象開口向上,對(duì)稱軸為x=2,而2-a22, 1+a-a2
=<2,故由f(2-a2)<f(1+a-a2)得,2-a2>1+a-a2,解得,a<1,選D。
點(diǎn)評(píng):中檔題,利用二次函數(shù)的圖象和性質(zhì),將抽象不等式轉(zhuǎn)化成具體不等式,利用不等式的解法等基礎(chǔ)知識(shí),達(dá)到解題目的。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請(qǐng)說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)的圖像頂點(diǎn)為,且圖像在x軸上截得線段長為8
(1)求函數(shù)的解析式;
(2)令  
①若函數(shù)上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍; 
②求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當(dāng)a=-2時(shí),求f(x)的最值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),對(duì)任意實(shí)數(shù)x都有成立,若當(dāng)時(shí),恒成立,則b的取值范圍是(   )
A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

分解因式的結(jié)果是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的兩個(gè)零點(diǎn)分別在區(qū)間和區(qū)間內(nèi),則實(shí)數(shù)的取值范圍是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知二次函數(shù)滿足
(Ⅰ)求的解析式;
(Ⅱ)當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果二次函數(shù)有兩個(gè)不同的零點(diǎn),則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案