【題目】用一個半徑為12厘米圓心角為的扇形紙片PAD卷成一個側(cè)面積最大的無底圓錐(接口不用考慮損失),放于水平面上.

1)無底圓錐被一陣風吹倒后(如圖1),求它的最高點到水平面的距離;

2)扇形紙片PAD上(如圖2),C是弧AD的中點,B是弧AC的中點,卷成無底圓錐后,求異面直線PABC所成角的大。

【答案】1;(2.

【解析】

(1)如圖,設為軸截面,過點于點,在中求出的長度即為所求;

(2)先求出,利用夾角公式求出,進而可得異面直線PABC所成角的大小.

(1)如圖所示,

為軸截面,過點于點,

,解得,

所以在中,,

,

即無底圓錐被一陣風吹倒后(如圖1),它的最高點到水平面的距離為,

2)如圖:

因為B是弧AC的中點,所以三角形為等腰直角三角形,

則由(1)得,且,

,

異面直線PABC所成角的大小為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)、的定義域均為,若對任意,且,具有,則稱函數(shù)上的單調(diào)非減函數(shù),給出以下命題:① 關(guān)于點和直線)對稱,則為周期函數(shù),且的一個周期;② 是周期函數(shù),且關(guān)于直線對稱,則必關(guān)于無窮多條直線對稱;③ 是單調(diào)非減函數(shù),且關(guān)于無窮多個點中心對稱,則的圖象是一條直線;④ 是單調(diào)非減函數(shù),且關(guān)于無窮多條平行于軸的直線對稱,則是常值函數(shù);以上命題中,所有真命題的序號是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左.右焦點分別為,短軸兩個端點為,且四邊形的邊長為 的正方形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,分別是橢圓長軸的左,右端點,動點滿足,連結(jié),交橢圓于點.證明: 的定值;

(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點,的定點,使得以為直徑的圓恒過直線,的交點,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

,曲線

過點

,且在點

處的切線方程為

.

(1)求

的值;

(2)證明:當

時,

(3)若當

時,

恒成立,求實數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程為,以極點為原點,極軸所在直線為軸建立直角坐標系.過點作傾斜角為的直線交曲線兩點.

1)求曲線的直角坐標方程,并寫出直線的參數(shù)方程;

2)過點的另一條直線關(guān)于直線對稱,且與曲線交于,兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.

1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;

(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,點關(guān)于直線的對稱點在橢圓上.

1)求橢圓的方程;

2)如圖,過點的直線與橢圓交于兩個不同的點(點在點的上方),試求面積的最大值;

3)若直線經(jīng)過點,且與橢圓交于兩個不同的點,是否存在直線(其中),使得到直線的距離滿足恒成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當時,記在區(qū)間的最大值為,最小值為,求的取值范圍.

查看答案和解析>>

同步練習冊答案