【題目】設(shè)函數(shù)

,曲線

過點(diǎn)

,且在點(diǎn)

處的切線方程為

.

(1)求

的值;

(2)證明:當(dāng)

時(shí),

;

(3)若當(dāng)

時(shí),

恒成立,求實(shí)數(shù)

的取值范圍.

【答案】(1)

;(2)詳見解析;(3)

.

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得

,再結(jié)合

聯(lián)立方程組,解得

的值;(2)即證明差函數(shù)

的最小值非負(fù),先求差函數(shù)的導(dǎo)數(shù),為研究導(dǎo)函數(shù)符號(hào),需對(duì)導(dǎo)函數(shù)再次求導(dǎo),得導(dǎo)函數(shù)最小值為零,因此差函數(shù)單調(diào)遞增,也即差函數(shù)最小值為

,(3)不等式恒成立問題,一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,本題仍研究差函數(shù)

,因?yàn)?/span>

,所以

.先求差函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)的導(dǎo)數(shù)得

,所以分

進(jìn)行討論:當(dāng)

時(shí),

滿足題意;當(dāng)

時(shí),能找到一個(gè)減區(qū)間,使得

不滿足題意.

試題解析:(1)由題意可知,

定義域?yàn)?/span>

,

(2)

設(shè)

,

,

上單調(diào)遞增,

上單調(diào)遞增,

(3)設(shè)

,

,

由(2)中知

,

,

當(dāng)

時(shí),

,

所以

單調(diào)遞增,

,成立.

②當(dāng)

時(shí),

,令

,得

當(dāng)

時(shí),

單調(diào)遞減,則

,

所以

上單調(diào)遞減,所以

,不成立.

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,二面角,的中點(diǎn).

1)證明:;

2)已知為直線上一點(diǎn),且不重合,若異面直線所成角為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個(gè)為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位長度得到的圖象,若的對(duì)稱中心為坐標(biāo)原點(diǎn),則關(guān)于函數(shù)有下述四個(gè)結(jié)論:

的最小正周期為 ②若的最大值為2,則

有兩個(gè)零點(diǎn) 在區(qū)間上單調(diào)

其中所有正確結(jié)論的標(biāo)號(hào)是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)有男生220人,學(xué)籍編號(hào)為1,2…,220;女生380人,學(xué)籍編號(hào)為221222,…,600.為了解學(xué)生學(xué)習(xí)的心理狀態(tài),按學(xué)籍編號(hào)采用系統(tǒng)抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行問卷調(diào)查(第一組采用簡單隨機(jī)抽樣,抽到的號(hào)碼為10),再從這10名學(xué)生中隨機(jī)抽取3人進(jìn)行座談,則這3人中既有男生又有女生的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),a為常數(shù).

1)求a的值;

2)判斷函數(shù)時(shí)單調(diào)性并證明;

3)若對(duì)于區(qū)間上的每一個(gè)x的值,不等式恒成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用一個(gè)半徑為12厘米圓心角為的扇形紙片PAD卷成一個(gè)側(cè)面積最大的無底圓錐(接口不用考慮損失),放于水平面上.

1)無底圓錐被一陣風(fēng)吹倒后(如圖1),求它的最高點(diǎn)到水平面的距離;

2)扇形紙片PAD上(如圖2),C是弧AD的中點(diǎn),B是弧AC的中點(diǎn),卷成無底圓錐后,求異面直線PABC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時(shí),解不等式;

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;

3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案