某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費,預計當每件商品的售價為元時,一年的銷售量為萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.
(I).
(II)當每件商品的售價為7元時,該連鎖分店一年的利潤最大,最大值為萬元;
每件商品的售價為元時,該連鎖分店一年的利潤最大,最大值為萬元.

試題分析:(I)由題意,該連鎖分店一年的利潤(萬元)與售價的函數(shù)關(guān)系式為.
(II)通過確定,求導數(shù)得到
,求得駐點,根據(jù),.討論
①當時,②當,時,導數(shù)值的正負,求得最大值.
試題解析:
(I)由題意,該連鎖分店一年的利潤(萬元)與售價的函數(shù)關(guān)系式為.
(II),

,得,
因為,,所以,.
①當時,,
是單調(diào)遞減函數(shù).
                       10分
②當,即時,
時,;時,
上單調(diào)遞增;在上單調(diào)遞減,

答:當每件商品的售價為7元時,該連鎖分店一年的利潤最大,
最大值為萬元;
每件商品的售價為元時,該連鎖分店一年的利潤最大,最大值為萬元.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,試確定函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),

(Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a為給定的正實數(shù),m為實數(shù),函數(shù)f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無極值點,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設(shè),對任意的,均存在,使得.試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于[1,2],
[0,1],使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)上可導,其導函數(shù)為,若滿足:,則下列判斷一定正確的是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知、都是定義在R上的函數(shù),,,,則關(guān)于的方程有兩個不同實根的概率為( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案