已知
、
都是定義在R上的函數(shù),
,
,
,
,則關于
的方程
有兩個不同實根的概率為( )
試題分析:令
,則
,所以
是減函數(shù),
.又
,所以
.由
得
.又
,由幾何概型概率公式得:
.選B.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
為常數(shù)),其圖象是曲線
.
(1)當
時,求函數(shù)
的單調(diào)減區(qū)間;
(2)設函數(shù)
的導函數(shù)為
,若存在唯一的實數(shù)
,使得
與
同時成立,求實數(shù)
的取值范圍;
(3)已知點
為曲線
上的動點,在點
處作曲線
的切線
與曲線
交于另一點
,在點
處作曲線
的切線
,設切線
的斜率分別為
.問:是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為
元,并且每件商品需向總店交
元的管理費,預計當每件商品的售價為
元時,一年的銷售量為
萬件.
(1)求該連鎖分店一年的利潤
(萬元)與每件商品的售價
的函數(shù)關系式
;
(2)當每件商品的售價為多少元時,該連鎖分店一年的利潤
最大,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
(
為常數(shù))
(1)當
時
恒成立,求實數(shù)
的取值范圍;
(2)若函數(shù)
有對稱中心為A(1,0),求證:函數(shù)
的切線
在切點處穿過
圖象的充要條件是
恰為函數(shù)在點A處的切線.(直線穿過曲線是指:直線與曲線有交點,且在交點左右附近曲線在直線異側)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的圖象在
上連續(xù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.若存在最小正整數(shù)
,使得
對任意的
成立,則稱函數(shù)
為
上的“
階收縮函數(shù)”.
(Ⅰ)若
,試寫出
,
的表達式;
(Ⅱ)已知函數(shù)
,試判斷
是否為
上的“
階收縮函數(shù)”.如果是,求出對應的
;如果不是,請說明理由;
(Ⅲ)已知
,函數(shù)
是
上的2階收縮函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)當
時,求曲線
在
處的切線方程;
(Ⅱ)設函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在
上存在一點
,使得
<
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的最大值為0,其中
。
(1)求
的值;
(2)若對任意
,有
成立,求實數(shù)
的最大值;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
的導函數(shù)圖象如圖所示,若
為銳角三角形,則一定成立的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
為常數(shù),函數(shù)
有兩個極值點
,則( )
查看答案和解析>>