設(shè)函數(shù)f(x)=若f(a)+f(-1)=2,則a=(  )
A.-3B.±3
C.-1D.±1
D
若a≥0,則+1=2,得a=1;
若a<0,則+1=2,得a=-1.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

遼寧號航母紀(jì)念章從2012年10月5日起開始上市.通過市場調(diào)查,得到該紀(jì)念章每1枚的市場價 (單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間
4
10
36
市場價
90
51
90
(1)根據(jù)上表數(shù)據(jù)結(jié)合散點圖,從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述遼寧號航母紀(jì)念章的市場價與上市時間的變化關(guān)系并說明理由:①;②;③
(2)利用你選取的函數(shù),求遼寧號航母紀(jì)念章市場價最低時的上市天數(shù)及最低的價格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.
(1)求證:-2<<-1.
(2)若x1,x2是方程f(x)=0的兩個實根,求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)xy∈R,且4xy+4y2x+6=0,則x的取值范圍是 (  )
A.-3≤x≤2B.-2≤x≤3
C.x≤-2或x≥3D.x≤-3或x≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2-2017x+8052+|x2-2017x+8052|,則f(1)+f(2)+f(3)+…+f(2013)=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達(dá)幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,排放時污染物的含量不得超過1%.己知在過濾過程中廢氣中的污染物數(shù)量尸(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關(guān)系為:P=P0e-kt,(k,P0均為正的常數(shù)).若在前5個小時的過濾過程中污染物被排除了90%.那么,至少還需( )時間過濾才可以排放.
A.小時B.小時C.5小時D.10小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)yf(x),xD,若存在常數(shù)C,對任意的x1D,存在唯一的x2D使得C,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=x3,x∈[1,2],則函數(shù)f(x)=x3在[1,2]上的幾何平均數(shù)為(  )
A.B.2
C.4 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)= (a<0)的定義域為D,若所有點(s,f(t))(s、t∈D)構(gòu)成一個正方形區(qū)域,則a的值為________.

查看答案和解析>>

同步練習(xí)冊答案