(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點.

(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點E到平面A1DB的距離

(1).(2)即點到平面的距離為

解析試題分析:以DA、DC、DD1所在的直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系如圖,

則D(0,0,0),A(a,0,0).B(a,a,0),C(0,a,0),E(0,a,),A1(a,0,a). …………3分
(1)設(shè)直線A1E與平面BDD1B1所成的角為
因為AC平面BDD1B1,所以平面BDD1B1的法向量為
,又

所以 .……………………………………………………………………6分
(2)設(shè)=為平面A1DB的法向量,
,  ………………………………………8分
 又 ………………………11分
即點到平面的距離為.…………………………………………………12分
考點:本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,角、距離的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,(2)小題,將立體問題轉(zhuǎn)化成平面問題,這也是解決立體幾何問題的一個基本思路。應(yīng)用空間向量,則可使問題解答得以簡化。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,⊙O的直徑AB=4,點C、D為⊙O上兩點,且∠CAB=45o,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在上是否存在點,使得平面平面ACD?若存在,試指出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四面體中,,且E、F分別是AB、BD的中點,

求證:(1)直線EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點。
(I)證明:平面;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知四棱錐平面
,底面為直角梯形,
分別是的中點.

(1)求證:// 平面;
(2)求截面與底面所成二面角的大小;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大小.

查看答案和解析>>

同步練習(xí)冊答案