【題目】已知在直角三角形ABC中,,(如右圖所示)
(Ⅰ)若以AC為軸,直角三角形ABC旋轉(zhuǎn)一周,試說明所得幾何體的結(jié)構(gòu)特征并求所得幾何體的表面積.
(Ⅱ)一只螞蟻在問題(Ⅰ)形成的幾何體上從點B繞著幾何體的側(cè)面爬行一周回到點B,求螞蟻爬行的最短距離.
【答案】(Ⅰ)幾何體為以為半徑,高的圓錐,
(Ⅱ)
【解析】
(Ⅰ)若以為軸,直角三角形旋轉(zhuǎn)一周,形成的幾何體為以為半徑,高的圓錐,由圓錐的表面積公式,即可求出結(jié)果.
(Ⅱ)利用側(cè)面展開圖,要使螞蟻爬行的最短距離,則沿點B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點B到點的距離,代入數(shù)值,即可求出結(jié)果.
解:(Ⅰ)在直角三角形ABC中,由
即,得,若以為軸旋轉(zhuǎn)一周,
形成的幾何體為以為半徑,高的圓錐,
則,其表面積為
.
(Ⅱ)由問題(Ⅰ)的圓錐,要使螞蟻爬行的最短距離,則沿點B的母線把圓錐側(cè)面展開為平面圖形(如圖)最短距離就是點B到點的距離,
,
在中,由余弦定理得:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負(fù)半軸上.若(為原點),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分不必要條件
C.若為假命題,則、均為假命題
D.命題:“,使得”,則非:“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為固定的整數(shù),定義任意整數(shù)坐標(biāo)點關(guān)于的余數(shù)是關(guān)于的余數(shù).找出所有正整數(shù)數(shù)組,使得以、、、為頂點的長方形具有如下性質(zhì):
ⅰ.長方形內(nèi)整數(shù)點以為余數(shù)出現(xiàn)的次數(shù)相同;
ⅱ.長方形邊界上整數(shù)點以為余數(shù)出現(xiàn)的次數(shù)相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對在同一圓周上三島A、B、C且位于(優(yōu)。┮黄娘L(fēng)景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風(fēng)光,現(xiàn)決定在上選擇一個點D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當(dāng)△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正方形花圃被分成5份.
(1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若將6個不同的盆栽都擺放入這5個部分,且要求每個部分至少有一個盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.若隨機變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的必要不充分條件;
C.若隨機變量服從二項分布:,則;
D.已知直線經(jīng)過點,則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域為.當(dāng)時, .(e為自然對數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)如果當(dāng)x≥1時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com