已知數(shù)列{}的前項和為  
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列{}的前項和為,求 。
(1)證明:
當(dāng)≥2時,根據(jù),
整理得×≥2),證得數(shù)列{}是首項及公比均為的等比數(shù)列。
(2)

試題分析:(1)證明:
當(dāng)≥2時,由,
于是,
整理得×≥2),
所以數(shù)列{}是首項及公比均為的等比數(shù)列。 6分
(2)由(1)得×。
于是,


點評:中檔題,本題具有較強(qiáng)的綜合性,本解答從確定通項公式入手,認(rèn)識到數(shù)列的特征,利用“裂項相消法”達(dá)到求和目的!胺纸M求和法”“裂項相消法”“錯位相減法”是高考常?嫉綌(shù)列求和方法。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點、、是平面直角坐標(biāo)系上的三點,且、、成等差數(shù)列,公差為,
(1)若坐標(biāo)為,點在直線上時,求點的坐標(biāo);
(2)已知圓的方程是,過點的直線交圓于兩點,
是圓上另外一點,求實數(shù)的取值范圍;
(3)若、都在拋物線上,點的橫坐標(biāo)為,求證:線段的垂直平分線與軸的交點為一定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對任意都有
(Ⅰ)求的值.
(Ⅱ)數(shù)列滿足:=+,數(shù)列是等差數(shù)列嗎?請給予證明;
(Ⅲ)令試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列是等差數(shù)列,則數(shù)列= 也是等差數(shù)列,類比上述性質(zhì),若數(shù)列是等比數(shù)列,且, ,則 ____________也是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的公差為2,若成等比數(shù)列, 則=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是單調(diào)遞增的等差數(shù)列,首項,前項和為,數(shù)列是等比數(shù)列,首項
(1)求的通項公式.
(2)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的首項為1,其前n項和為,是公比為正整數(shù)的等比數(shù)列,其首項為3,前n項和為. 若.
(1)求,的通項公式;(7分)
(2)求數(shù)列的前n項和.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)的圖象經(jīng)過點(1,λ),且對任意x∈R,
都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足
(1)當(dāng)x為正整數(shù)時,求f(n)的表達(dá)式;(2)設(shè)λ=3,求a1+a2+a3+…+a2n;
(3)若對任意n∈N*,總有anan+1<an+1an+2,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

1202年,意大利數(shù)學(xué)家斐波那契在他的書中給出了一個關(guān)于兔子繁殖的遞推關(guān)系:),其中表示第個月的兔子的總對數(shù),,則的值為(   )
A.13B.21C.34D.55

查看答案和解析>>

同步練習(xí)冊答案