【題目】已知函數(shù) (,為自然對(duì)數(shù)的底數(shù),).
(1)若函數(shù)僅有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)證明:當(dāng)時(shí),有兩個(gè)零點(diǎn)().且滿足.
【答案】(1);(2)證明見解析.
【解析】試題分析:
(1)由函數(shù)的解析式可得,則滿足題意時(shí),方程必?zé)o解,分類討論:①當(dāng)時(shí),符合題意;②當(dāng)時(shí),,據(jù)此可得.即實(shí)數(shù)的取值范圍是.
(2)由(1)的結(jié)論可得,知當(dāng)時(shí),為的唯一極小值點(diǎn),且,,則,故.要證明,即證.,可轉(zhuǎn)化為,即,據(jù)此構(gòu)造函數(shù),結(jié)合函數(shù)的性質(zhì)可知在區(qū)間上是減函數(shù),,等價(jià)于成立,則原命題得證.
試題解析:
(1)
,
由,得或
因?yàn)?/span>僅有一個(gè)極值點(diǎn),
所以關(guān)于的方程必?zé)o解,
①當(dāng)時(shí),無解,符合題意;
②當(dāng)時(shí),由,得,
故由,得.
故當(dāng)時(shí),若,
則,此時(shí)為減函數(shù),
若,則,此時(shí)為增函數(shù),
所以為的唯一極值點(diǎn),
綜上,可得實(shí)數(shù)的取值范圍是.
(2)由(1),知當(dāng)時(shí),為的唯一極值點(diǎn),且是極小值點(diǎn),
又因?yàn)楫?dāng)時(shí),,
,,
所以當(dāng)時(shí),有一個(gè)零點(diǎn),
當(dāng)時(shí),有另一個(gè)零點(diǎn),
即,
且,
.①
所以.
下面再證明,即證.
由,得,
因?yàn)楫?dāng)時(shí),為減函數(shù),
故只需證明,
也就是證明,
因?yàn)?/span>,
由①式,
可得.
令,
則.
令,
因?yàn)?/span>為區(qū)間上的減函數(shù),且,所以,即
在區(qū)間上恒成立,
所以在區(qū)間上是減函數(shù),即,所以,
即證明成立,
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 有極值,且函數(shù)的極值點(diǎn)是的極值點(diǎn),其中是自然對(duì)數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值)
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),若函數(shù)的最小值為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,⊥平面,底面為梯形,, ,,,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是 ( )
A. “若,則,或”的否定是“若則,或 ”
B. a,b是兩個(gè)命題,如果a是b的充分條件,那么是的必要條件.
C. 命題“,使 得”的否定是:“,均有 ”
D. 命題“ 若,則”的否命題為真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則進(jìn)行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定圓,動(dòng)圓過點(diǎn)且與圓相切,記圓心的軌跡為.
(1)求軌跡的方程;
(2)設(shè)點(diǎn)在上運(yùn)動(dòng),與關(guān)于原點(diǎn)對(duì)稱,且,當(dāng)的面積最小時(shí), 求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】青少年“心理健康”問題越來越引起社會(huì)關(guān)注,某校對(duì)高一600名學(xué)生進(jìn)行了一次“心理健康”知識(shí)測試,并從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖。
分組 | 頻數(shù) | 頻率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合計(jì) | 1.00 |
(1)填寫答題卡頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);
(2)請(qǐng)你估算學(xué)生成績的平均數(shù)及中位數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).
【答案】(1);(2)答案見解析.
【解析】試題分析:
(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為
(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,則,然后證明為常數(shù)為即可.
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).
試題解析:
(1)設(shè)所求直線方程為,即,
∵直線與圓相切,∴,得,
∴所求直線方程為
(2)方法1:假設(shè)存在這樣的點(diǎn),
當(dāng)為圓與軸左交點(diǎn)時(shí),;
當(dāng)為圓與軸右交點(diǎn)時(shí),,
依題意,,解得,(舍去),或.
下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).
設(shè),則,
∴ ,
從而為常數(shù).
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,
∴,將代入得,
,即
對(duì)恒成立,
∴,解得或(舍去),
所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).
點(diǎn)睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān).
(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).
(1)當(dāng)時(shí),求的最大值,并推斷方程是否有實(shí)數(shù)解;
(2)若在區(qū)間上的最大值為-3,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的定義域?yàn)?/span>R,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)為“完美函數(shù)”.
(1)判斷函數(shù)是否為“完美函數(shù)”.若它是“完美函數(shù)”,求出所有的的取值的集合;若它不是,請(qǐng)說明理由.
(2)已知函數(shù)是“完美函數(shù)”,且是偶函數(shù).且當(dāng)0時(shí),.求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com