四面體S-ABC中,各個(gè)側(cè)面都是邊長(zhǎng)為a的正三角形,E,F(xiàn)分別是SC和AB的中點(diǎn),則異面直線EF與SA所成的角等于( 。
A、90°B、60°C、45°D、30°
分析:取AC中點(diǎn)G,連接EG,GF,F(xiàn)C,根據(jù)中位線可知GE∥SA,根據(jù)異面直線所成角的定義可知∠GEF為異面直線EF與SA所成的角,在△GEF中求出此角即可.
解答:精英家教網(wǎng)解:取AC中點(diǎn)G,連接EG,GF,F(xiàn)C
設(shè)棱長(zhǎng)a=2,則CF=
3
,而CE=1
∴EF=
2
,GE=1,GF=1
而GE∥SA,∴∠GEF為異面直線EF與SA所成的角
∵EF=
2
,GE=1,GF=1
∴△GEF為等腰直角三角形,故∠GEF=45°
故選C
點(diǎn)評(píng):本題主要考查了異面直線所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

225、如圖,在空間四面體S-ABC中,已知∠ABC=90°,SA⊥平面ABC,AN⊥SB,AM⊥SC,證明:SC⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體S-ABC中,E為SA的中點(diǎn),F(xiàn)為△ABC的中心,則直線EF與平面ABC所成的角的正切值是(  )
A、
3
10
10
B、1
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:正四面體S-ABC中,如果E,F(xiàn)分別是SC,AB的中點(diǎn),那么異面直線EF與SA所成的角等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為2的正四面體S-ABC中,M為SB上的動(dòng)點(diǎn),則AM+MC的最小值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四面體S-ABC中,E為SA的中點(diǎn),F(xiàn)為△ABC的中心,則直線EF與平面ABC所成的角的大小為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案