【題目】如圖,某小區(qū)有一塊矩形地塊,其中,,單位:百米.已知是一個游泳池,計劃在地塊內(nèi)修一條與池邊相切于點的直路(寬度不計),交線段于點,交線段于點.現(xiàn)以點為坐標(biāo)原點,以線段所在直線為軸,建立平面直角坐標(biāo)系,若池邊滿足函數(shù)的圖象,若點到軸距離記為.
(1)當(dāng)時,求直路所在的直線方程;
(2)當(dāng)為何值時,地塊在直路不含泳池那側(cè)的面積取到最大,最大值時多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美,寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結(jié)論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標(biāo)均為整數(shù)的點);
②曲線C上存在到原點的距離超過的點;
③曲線C所圍成的“心形”區(qū)域的面積小于3.其中所有正確結(jié)論的個數(shù)是( ).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在直三棱柱中,,,是棱上一點,是的延長線與的延長線的交點,且平面.
(1)求證:;
(2)求二面角的正弦值;
(3)若點在線段上,且直線與平面所成的角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,
,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對某新型病毒,某科研機構(gòu)已研發(fā)出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經(jīng)過一段時間后,對這100名志愿者進行該新型病毒抗體檢測,發(fā)現(xiàn)有的志愿者未產(chǎn)生該新型病毒抗體,在未產(chǎn)生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占.
產(chǎn)生抗體 | 未產(chǎn)生抗體 | 合計 | |
甲 | |||
乙 | |||
合計 |
(1)根據(jù)題中數(shù)據(jù),完成列聯(lián)表;
(2)根據(jù)(1)中的列聯(lián)表,判斷能否有的把握認為甲乙兩種疫苗的效果有差異.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個正四面體和一個正四棱錐,它們的各條棱長均相等,則下列說法:
①它們的高相等;②它們的內(nèi)切球半徑相等;③它們的側(cè)棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個斜三棱柱.其中正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時,判斷直線與曲線的位置關(guān)系;
(2)若直線與曲線相交所得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線與軸有唯一公共點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)曲線在點處的切線斜率為.若兩個不相等的正實數(shù),滿足,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com