4.已知a,b是兩個(gè)正實(shí)數(shù).且$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^}$=($\frac{1}{{2}^{a}}$)b,則ab有( 。
A.最小值4B.最大值4C.最小值2D.最大值2

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)可得a+b=ab,再根據(jù)基本不等式即可求出ab的最小值.

解答 解:∵$\frac{1}{{2}^{a}}$•$\frac{1}{{2}^}$=($\frac{1}{{2}^{a}}$)b,
∴a+b=ab,
∴ab=a+b≥2$\sqrt{ab}$,
∴$\sqrt{ab}$≥2,
∴ab≥4,當(dāng)且僅當(dāng)a=b=2時(shí)取等號,
故則ab有最小值為4,
故選:A

點(diǎn)評 本題考查了指數(shù)函數(shù)的性質(zhì)和基本不等式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某同學(xué)用五點(diǎn)法畫函數(shù)f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3x}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)請將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式f(x)=5sin(2x-$\frac{π}{6}$);
(2)若函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后對應(yīng)的函數(shù)為g(x),求g(x)的圖象離原點(diǎn)最近的對稱中心(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,拋物線上點(diǎn)(-5,m)到焦點(diǎn)距離是6,則拋物線的方程是( 。
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=|log3x|,若函數(shù)y=f(x)-m有兩個(gè)不同的零點(diǎn)a,b,則( 。
A.a+b=1B.a+b=3mC.ab=1D.b=am

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)={e^x}-f(0)x+\frac{1}{2}{x^2}$,則f'(1)=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a22=37,S22=352.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n+3}•{a}_{n+4}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,正方形邊長是2,直線x+y-3=0與正方形交于兩點(diǎn),向正方形內(nèi)投飛鏢,則飛鏢落在陰影部分內(nèi)的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)D是橢圓C上一動(dòng)點(diǎn)當(dāng)△DF1F2的面積取得最大值1時(shí),△DF1F2為直角三角形.
(1)橢圓C的方程.
(2)已知點(diǎn)P是橢圓C上的一點(diǎn),則過點(diǎn)P(x0,y0)的切線的方程為$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{^{2}}$=1.過直線l:x=2上的任意點(diǎn)M引橢圓C的兩條切線,切點(diǎn)分別為A,B,求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{6}}{3}$,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為$\frac{\sqrt{3}}{2}$.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),是否存在k的值,使得直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).且EC⊥ED,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案