【題目】綠水青山就是金山銀山.近年來,祖國各地依托本地自然資源,打造旅游產業(yè),旅游業(yè)正蓬勃發(fā)展.景區(qū)與游客都應樹立尊重自然、順應自然、保護自然的生態(tài)文明理念,合力使旅游市場走上規(guī)范有序且可持續(xù)的發(fā)展軌道.某景區(qū)有一個自愿消費的項目:在參觀某特色景點入口處會為每位游客拍一張與景點的合影,參觀后,在景點出口處會將剛拍下的照片打印出來,游客可自由選擇是否帶走照片,若帶走照片則需支付20元,沒有被帶走的照片會收集起來統(tǒng)一銷毀.該項目運營一段吋間后,統(tǒng)計出平均只有三成的游客會選擇帶走照片,為改善運營狀況,該項目組就照片收費與游客消費意愿關系作了市場調研,發(fā)現(xiàn)收費與消費意愿有較強的線性相關性,并統(tǒng)計出在原有的基礎上,價格每下調1元,游客選擇帶走照片的可能性平均增加0.05,假設平均每天約有5000人參觀該特色景點,每張照片的綜合成本為5元,假設每個游客是否購買照片相互獨立.
(1)若調整為支付10元就可帶走照片,該項目每天的平均利潤比調整前多還是少?
(2)要使每天的平均利潤達到最大值,應如何定價?
【答案】(1)多10000元;(2)定價為13元
【解析】
(1)先根據概率分布求數學期望,再比較兩個期望大小得結果;
(2)先根據概率分布求數學期望函數關系式,再根據二次函數性質求最值.
(1)當收費為20元時,照片被帶走的可能性為0.3,不被帶走的可能性為0.7,設每個游客的利潤為(元),則是隨機變量,其分布列為:
15 | -5 | |
0.3 | 0.7 |
元,則500個游客的平均利潤為5000元;
當收費為10元時,照片被帶走的可能性為,不被帶走的可能性為0.2,
設每個游客的利潤為(元),則是隨機變量,其分布列為:
5 | -5 | |
0.8 | 0.2 |
元,則500個游客的平均利潤為15000元;
該項目每天的平均利潤比調整前多10000元.
(2)設降價元,則,照片被帶走的可能性為,
不被帶走的可能性為,
設每個游客的利潤為(元),則是隨機變量,其分布列為:
-5 | ||
,
當時,有最大值3.45元,
即當定價為13元時,日平均利潤為17250元.
科目:高中數學 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據數列的定義判斷數列,,的類型,并據此寫出三個數列的通項公式;
(2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=6sinθ,建立以極點為坐標原點,極軸為x軸正半軸的平面直角坐標系.直線l的參數方程是,(t為參數).
(1)求曲線C的直角坐標方程;
(2)若直線l與曲線C相交于A,B兩點,且|AB|=,求直線的斜率k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為發(fā)揮體育核心素養(yǎng)的獨特育人價值,越來越多的中學將某些體育項目納入到學生的必修課程.惠州市某中學計劃在高一年級開設游泳課程,為了解學生對游泳的興趣,某數學研究學習小組隨機從該校高一年級學生中抽取了100人進行調查.
(1)已知在被抽取的學生中高一班學生有6名,其中3名對游泳感興趣,現(xiàn)在從這6名學生中隨機抽取3人,求至少有2人對游泳感興趣的概率;
(2)該研究性學習小組在調查中發(fā)現(xiàn),對游泳感興趣的學生中有部分曾在市級或市級以上游泳比賽中獲獎,具體獲獎人數如下表所示.若從高一班和高一班獲獎學生中隨機各抽取2人進行跟蹤調查,記選中的4人中市級以上游泳比賽獲獎的人數為,求隨機變量的分布列及數學期望.
班級 | 一 | 一 | 一 | 一 | 一 | 一 | 一 | 一 | 一 | 一 | |
市級 比賽獲獎人數 | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | |
市級以上 比賽獲獎人數 | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)直線與軸的交點為,經過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com