精英家教網 > 高中數學 > 題目詳情

【題目】綠水青山就是金山銀山.近年來,祖國各地依托本地自然資源,打造旅游產業(yè),旅游業(yè)正蓬勃發(fā)展.景區(qū)與游客都應樹立尊重自然、順應自然、保護自然的生態(tài)文明理念,合力使旅游市場走上規(guī)范有序且可持續(xù)的發(fā)展軌道.某景區(qū)有一個自愿消費的項目:在參觀某特色景點入口處會為每位游客拍一張與景點的合影,參觀后,在景點出口處會將剛拍下的照片打印出來,游客可自由選擇是否帶走照片,若帶走照片則需支付20元,沒有被帶走的照片會收集起來統(tǒng)一銷毀.該項目運營一段吋間后,統(tǒng)計出平均只有三成的游客會選擇帶走照片,為改善運營狀況,該項目組就照片收費與游客消費意愿關系作了市場調研,發(fā)現(xiàn)收費與消費意愿有較強的線性相關性,并統(tǒng)計出在原有的基礎上,價格每下調1元,游客選擇帶走照片的可能性平均增加0.05,假設平均每天約有5000人參觀該特色景點,每張照片的綜合成本為5元,假設每個游客是否購買照片相互獨立.

1)若調整為支付10元就可帶走照片,該項目每天的平均利潤比調整前多還是少?

2)要使每天的平均利潤達到最大值,應如何定價?

【答案】1)多10000元;(2)定價為13

【解析】

1)先根據概率分布求數學期望,再比較兩個期望大小得結果;

2)先根據概率分布求數學期望函數關系式,再根據二次函數性質求最值.

1)當收費為20元時,照片被帶走的可能性為0.3,不被帶走的可能性為0.7,設每個游客的利潤為(元),則是隨機變量,其分布列為:

15

5

0.3

0.7

元,則500個游客的平均利潤為5000元;

當收費為10元時,照片被帶走的可能性為,不被帶走的可能性為0.2,

設每個游客的利潤為(元),則是隨機變量,其分布列為:

5

5

0.8

0.2

元,則500個游客的平均利潤為15000元;

該項目每天的平均利潤比調整前多10000.

2)設降價元,則,照片被帶走的可能性為,

不被帶走的可能性為

設每個游客的利潤為(元),則是隨機變量,其分布列為:

5

,

時,有最大值3.45元,

即當定價為13元時,日平均利潤為17250.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在我們的教材必修一中有這樣一個問題,假設你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:

方案一:每天回報元;

方案二:第一天回報元,以后每天比前一天多回報元;

方案三:第一天回報元,以后每天的回報比前一天翻一番.

記三種方案第天的回報分別為,.

1)根據數列的定義判斷數列,,的類型,并據此寫出三個數列的通項公式;

2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求函數的單調區(qū)間;

2)設,當時,對任意,存在,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ6sinθ,建立以極點為坐標原點,極軸為x軸正半軸的平面直角坐標系.直線l的參數方程是,(t為參數)

(1)求曲線C的直角坐標方程;

(2)若直線l與曲線C相交于AB兩點,且|AB|=,求直線的斜率k

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知兩定點,動點滿足.

1)求動點的軌跡的方程;

2)軌跡上有兩點,,它們關于直線對稱,且滿足,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為發(fā)揮體育核心素養(yǎng)的獨特育人價值,越來越多的中學將某些體育項目納入到學生的必修課程.惠州市某中學計劃在高一年級開設游泳課程,為了解學生對游泳的興趣,某數學研究學習小組隨機從該校高一年級學生中抽取了100人進行調查.

1)已知在被抽取的學生中高一班學生有6名,其中3名對游泳感興趣,現(xiàn)在從這6名學生中隨機抽取3人,求至少有2人對游泳感興趣的概率;

2)該研究性學習小組在調查中發(fā)現(xiàn),對游泳感興趣的學生中有部分曾在市級或市級以上游泳比賽中獲獎,具體獲獎人數如下表所示.若從高一班和高一班獲獎學生中隨機各抽取2人進行跟蹤調查,記選中的4人中市級以上游泳比賽獲獎的人數為,求隨機變量的分布列及數學期望.

班級

市級

比賽獲獎人數

2

2

3

3

4

4

3

3

4

2

市級以上

比賽獲獎人數

2

2

1

0

2

3

3

2

1

2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)直線軸的交點為,經過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在等腰中,,分別為的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

(1)證明:平面

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

同步練習冊答案