【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn),,動點(diǎn)滿足.
(1)求動點(diǎn)的軌跡的方程;
(2)軌跡上有兩點(diǎn),,它們關(guān)于直線:對稱,且滿足,求的面積.
【答案】(1)動點(diǎn)的軌跡是圓,其方程為(2)
【解析】
(1)設(shè)動點(diǎn)的坐標(biāo)為表示出化簡可得.
(2)根據(jù)對稱,由垂徑定理可得圓心在直線:上,即可求出直線的方程,易知垂直于直線,且.設(shè)的中點(diǎn)為,則,計算可得,,的值,即可求出的面積.
(1)設(shè)動點(diǎn)的坐標(biāo)為,則.
整理得,故動點(diǎn)的軌跡是圓,且方程為.
(2)由(1)知動點(diǎn)的軌跡是圓心為,半徑的圓,圓上兩點(diǎn),關(guān)于直線對稱,由垂徑定理可得圓心在直線:上,代入并求得,故直線的方程為.
易知垂直于直線,且.
設(shè)的中點(diǎn)為,則
,又,.
∴,,∴,.
易知,故到的距離等于,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個國家身高正常的標(biāo)準(zhǔn)是不一樣的,不同年齡、不同種族、不同地區(qū)身高都是有差異的,我們國家會定期進(jìn)行0~18歲孩子身高體重全國性調(diào)查,然后根據(jù)這個調(diào)查結(jié)果制定出相應(yīng)的各個年齡段的身高標(biāo)準(zhǔn).一般測量出一個孩子的身高,對照一下身高體重表,如果在平均值標(biāo)準(zhǔn)差以內(nèi)的就說明你的孩子身高是正常的,否則說明你的孩子可能身高偏矮或偏高了.根據(jù)科學(xué)研究0~18歲的孩子的身高服從正態(tài)分布.在某城市隨機(jī)抽取100名18歲男大學(xué)生得到其身高()的數(shù)據(jù).
(1)記表示隨機(jī)抽取的100名18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi)的人數(shù),求及的數(shù)學(xué)期望.
(2)若18歲男大學(xué)生身高的數(shù)據(jù)在之內(nèi),則說明孩子的身高是正常的.
(i)請用統(tǒng)計學(xué)的知識分析該市18歲男大學(xué)生身高的情況;
(ii)下面是抽取的100名18歲男大學(xué)生中20名大學(xué)生身高()的數(shù)據(jù):
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
經(jīng)計算得,,其中為抽取的第個學(xué)生的身高,.用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計,剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和的值.(精確到0.01)
附:若隨機(jī)變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點(diǎn)的大圓有且只有一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山.近年來,祖國各地依托本地自然資源,打造旅游產(chǎn)業(yè),旅游業(yè)正蓬勃發(fā)展.景區(qū)與游客都應(yīng)樹立尊重自然、順應(yīng)自然、保護(hù)自然的生態(tài)文明理念,合力使旅游市場走上規(guī)范有序且可持續(xù)的發(fā)展軌道.某景區(qū)有一個自愿消費(fèi)的項目:在參觀某特色景點(diǎn)入口處會為每位游客拍一張與景點(diǎn)的合影,參觀后,在景點(diǎn)出口處會將剛拍下的照片打印出來,游客可自由選擇是否帶走照片,若帶走照片則需支付20元,沒有被帶走的照片會收集起來統(tǒng)一銷毀.該項目運(yùn)營一段吋間后,統(tǒng)計出平均只有三成的游客會選擇帶走照片,為改善運(yùn)營狀況,該項目組就照片收費(fèi)與游客消費(fèi)意愿關(guān)系作了市場調(diào)研,發(fā)現(xiàn)收費(fèi)與消費(fèi)意愿有較強(qiáng)的線性相關(guān)性,并統(tǒng)計出在原有的基礎(chǔ)上,價格每下調(diào)1元,游客選擇帶走照片的可能性平均增加0.05,假設(shè)平均每天約有5000人參觀該特色景點(diǎn),每張照片的綜合成本為5元,假設(shè)每個游客是否購買照片相互獨(dú)立.
(1)若調(diào)整為支付10元就可帶走照片,該項目每天的平均利潤比調(diào)整前多還是少?
(2)要使每天的平均利潤達(dá)到最大值,應(yīng)如何定價?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:與直線交于A、B兩點(diǎn).
(1)當(dāng)取得最小值為時,求的值.
(2)在(1)的條件下,過點(diǎn)作兩條直線PM、PN分別交拋物線C于M、N(M、N不同于點(diǎn)P)兩點(diǎn),且的平分線與軸平行,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點(diǎn)在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2011年國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源于中國古代數(shù)學(xué)家祖沖之的圓周率。公元263年,中國數(shù)學(xué)家劉徽用“割圓術(shù)”計算圓周率,計算到圓內(nèi)接3072邊形的面積,得到的圓周率是.公元480年左右,南北朝時期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分?jǐn)?shù)值,密率和約率。大約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為().在這4個圓周率的近似值中,最接近真實(shí)值的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在x軸,y軸上的截距分別為,證明:為定值;
(3)若是橢圓上不同兩點(diǎn),軸,圓E過,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com