【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1a2,,an,,a2015;已知函數(shù)fx=a2sinωx+φ)(ω0,|φ|)的最小正周期是a1,且函數(shù)的圖象關(guān)于直線x=對稱。

)求函數(shù)表達式;

)已知ABC中三邊a,b,c對應(yīng)角A,B,Ca4,b4,A30°,求

【答案】fx=4sin2πx+4sin+)或4sin+

【解析】

試題分析:)由數(shù)列求得值,由周期求得值,由對稱軸求得,從而確定函數(shù)解析式;)首先由正弦定理解三角形得到B的大小,代入函數(shù)式可求得函數(shù)值

試題解析:)由已知,當(dāng)n2時,an=1+3+5+…+2n1=n2

a1=1也符合an=n2,知a1=1a2=4,所以函數(shù)y=fx)的最小正周期為1,所以ω=2π,

fx=4sin2πx+φ),又函數(shù)y=fx)的圖象關(guān)于直線x=對稱

所以φ=kπ+k∈z),因為|φ|,所以φ=,則fx=4sin2πx+)(6

)由正弦定理計算B,可得4sin+)或4sin+ (12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為原點,且與直線相切.

(1)求圓的方程;

(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),在極坐標(biāo)系與直角坐標(biāo)系取相同的長度單位,且以原點為極軸,以軸正半軸為極軸中,圓的方程為

1求圓的圓心到直線的距離;

2設(shè)圓與直線交于點,若點的坐標(biāo)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元。該公司第n年需要付出設(shè)備的維修和工人工資等費用的信息如下圖。

引進這種設(shè)備后,第幾年后該公司開始獲利;

這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的前n項和為Sn,已知a1=2,且4S1,3S2,2S3成等差數(shù)列.

)求數(shù)列的通項公式;

)設(shè),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣方法(按,類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).

(1)類工人和類工人中個抽查多少工人?

(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.

表1:

表2:

先確定,再完成下列頻率分布直方圖,就生產(chǎn)能力而言,類工人中個體間的差異程度與類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結(jié)論)

分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中

的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的方程:

1)求m的取值范圍;

2)若圓C與直線相交于,兩點,且,求的值

3(1)中的圓與直線x2y40相交于M、N兩點,且OMON(O為坐標(biāo)原點),求m的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品.

(1)求的值;

(2)若該產(chǎn)品的成本價格為萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案