【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<)的最小正周期是a1,且函數(shù)的圖象關(guān)于直線x=對稱。
(Ⅰ)求函數(shù)表達式;
(Ⅱ)已知△ABC中三邊a,b,c對應(yīng)角A,B,C,a=4,b=4,∠A=30°,求。
【答案】(Ⅰ)f(x)=4sin(2πx+)(Ⅱ)4sin(+)或4sin(+)
【解析】
試題分析:(Ⅰ)由數(shù)列求得值,由周期求得值,由對稱軸求得值,從而確定函數(shù)解析式;(Ⅱ)首先由正弦定理解三角形得到B的大小,代入函數(shù)式可求得函數(shù)值
試題解析:(Ⅰ)由已知,當(dāng)n≥2時,an=1+3+5+…+(2n﹣1)=n2
而a1=1也符合an=n2,知a1=1,a2=4,所以函數(shù)y=f(x)的最小正周期為1,所以ω=2π,
則f(x)=4sin(2πx+φ),又函數(shù)y=f(x)的圖象關(guān)于直線x=對稱
所以φ=kπ+(k∈z),因為|φ|<,所以φ=,則f(x)=4sin(2πx+)(6分)
(Ⅱ)由正弦定理計算B為,可得4sin(+)或4sin(+) (12分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極軸,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的圓心到直線的距離;
(2)設(shè)圓與直線交于點,若點的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元。該公司第n年需要付出設(shè)備的維修和工人工資等費用的信息如下圖。
(Ⅰ)求;
(Ⅱ)引進這種設(shè)備后,第幾年后該公司開始獲利;
(Ⅲ)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的前n項和為Sn,已知a1=2,且4S1,3S2,2S3成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣方法(按類,類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)類工人和類工人中個抽查多少工人?
(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.
表1:
表2:
① 先確定,,再完成下列頻率分布直方圖,就生產(chǎn)能力而言,類工人中個體間的差異程度與類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結(jié)論)
② 分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中
的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點,且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品噸.
(1)求的值;
(2)若該產(chǎn)品的成本價格為萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com