【題目】某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣方法(按類,類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)類工人和類工人中個(gè)抽查多少工人?
(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.
表1:
表2:
① 先確定,,再完成下列頻率分布直方圖,就生產(chǎn)能力而言,類工人中個(gè)體間的差異程度與類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)
② 分別估計(jì)類工人和類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中
的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動點(diǎn)
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點(diǎn),分別是棱,的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若∥平面,則線段長度的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列算法語句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<)的最小正周期是a1,且函數(shù)的圖象關(guān)于直線x=對稱。
(Ⅰ)求函數(shù)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對應(yīng)角A,B,C,a=4,b=4,∠A=30°,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 四棱錐中, 平面平面,為線段上一點(diǎn),為的中點(diǎn).
(1)證明: 平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機(jī)抽樣)從甲、乙兩組共抽取4名工人進(jìn)行技術(shù)考核.
(1)求從甲、乙兩組各抽取的人數(shù);
(2)求從甲組抽取的工人中恰有1名女工人的概率;
(3)求抽取的4名工人中恰有2名男工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十一國慶節(jié)期間,某商場舉行購物抽獎(jiǎng)活動,舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會,每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,抽獎(jiǎng)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,求的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出為了累計(jì)得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點(diǎn),求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com