(2011•許昌三模)設l,m是兩條不同直線,α是一個平面,則下列四個命題正確的是( 。
分析:根據(jù)題意,依次分析選項:A,根據(jù)線面垂直的判定定理判斷.C:根據(jù)線面平行的判定定理判斷.B:由線線的位置關系判斷.D:由線面垂直的性質(zhì)定理判斷;綜合可得答案.
解答:解:A,根據(jù)線面垂直的判定定理,要垂直平面內(nèi)兩條相交直線才行,不正確;
B:平行于同一平面的兩直線可能平行,異面,相交,不正確.
C:l∥α,m?α,則l∥m或兩線異面,故不正確.
D:由線面垂直的性質(zhì)可知:平行線中的一條垂直于這個平面則另一條也垂直這個平面.故正確.
故選D.
點評:本題主要考查了立體幾何中線面之間的位置關系及其中的公理和判定定理,也蘊含了對定理公理綜合運用能力的考查,屬中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)已知向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)
與 
b
=(1,y)
共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內(nèi)角分別為A、B、C,若有f(A-
π
3
)=
3
,邊BC=
7
sinB=
21
7
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)已知命題:p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“¬p且q”是真命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)已知a、b、c都是正整數(shù)且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分.比賽進行到有一人比對方多2分或打滿6局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立,已知第二局比賽結束時比賽停止的概率為
5
9
,若右圖為統(tǒng)計這次比賽的局數(shù)和甲乙的總得分數(shù)S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列數(shù)學望Eξ.

查看答案和解析>>

同步練習冊答案