(2011•許昌三模)已知命題:p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“¬p且q”是真命題,則實數(shù)a的取值范圍是( 。
分析:命題“¬p且q”是真命題,¬p且q,均為真命題,由此可求a的取值范圍.
解答:解:∵命題“¬p且q”是真命題,
∴¬p且q,均為真命題,
命題:p:“?x∈[1,2],x2-a≥0”,為真命題,則a≤1,∴¬p為真命題時,a>1;
命題q:“?x∈R,x2+2ax+2-a=0”,為真命題,則△=4a2-4(2-a)≥0,∴a≤-2或a≥1,
∴a>1,
故選D.
點評:本題考查復合命題的真假判斷,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
與 
b
=(1,y)
共線,設函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內(nèi)角分別為A、B、C,若有f(A-
π
3
)=
3
,邊BC=
7
sinB=
21
7
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)已知a、b、c都是正整數(shù)且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)設l,m是兩條不同直線,α是一個平面,則下列四個命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•許昌三模)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分.比賽進行到有一人比對方多2分或打滿6局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立,已知第二局比賽結(jié)束時比賽停止的概率為
5
9
,若右圖為統(tǒng)計這次比賽的局數(shù)和甲乙的總得分數(shù)S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設ξ表示比賽停止時已比賽的局數(shù),求隨機變量ξ的分布列數(shù)學望Eξ.

查看答案和解析>>

同步練習冊答案