精英家教網 > 高中數學 > 題目詳情

【題目】已知向量 、 滿足| |=1,| |=2, 的夾角為60°.
(1)若(k )⊥( + ),求k的值;
(2)若|k |<2,求k的取值范圍.

【答案】
(1)解:∵(k )⊥( + ),

∴(k )( + )=0,

+(k﹣1) =0,

| |=1,| |=2,< >=60°,

∴2k﹣5=0,∴k=


(2)解:|k |=

= = <2,

∴k2﹣2k<0,∴0<k<2.(10分)


【解析】(1)(k )( + )=0,從而得到2k﹣5=0,由此能求出k.(2)|k |= = <2,由此能求出結果.
【考點精析】認真審題,首先需要了解數量積判斷兩個平面向量的垂直關系(若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若不等式|x+1|+| ﹣1|≤a有解,則實數a的取值范圍是(
A.a≥2
B.a<2
C.a≥1
D.a<1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高二年級在一次數學測驗后,隨機抽取了部分學生的數學成績組成一個樣本,得到如下頻率分布直方圖:
(1)求這部分學生成績的樣本平均數 和樣本方差s2(同一組數據用該組的中點值作為代表)
(2)由頻率分布直方圖可以認為,該校高二學生在這次測驗中的數學成績X服從正態(tài)分布 . ①利用正態(tài)分布,求P(X≥129);
②若該校高二共有1000名學生,試利用①的結果估計這次測驗中,數學成績在129分以上(含129分)的學生人數.(結果用整數表示)
附:① ≈14.5②若X~N(μ,σ2),則P(μ﹣2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的偶函數f(x),滿足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函數,又α、β是銳角三角形的兩個內角,則(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知p:方程 =1表示焦點在x軸上的橢圓,q:雙曲線 =1的離心率e∈( , ).
(1)若橢圓 =1的焦點和雙曲線 =1的頂點重合,求實數m的值;
(2)若“p∧q”是真命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱柱ABC﹣A1B1C1的各個棱長都相等,E為BC的中點,動點F在CC1上,且不與點C重合
(1)當CC1=4CF時,求證:EF⊥A1C
(2)設二面角C﹣AF﹣E的大小為α,求tanα的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數f(x)的各極大值之和為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知| |=1,| |=
(1)若 、 的夾角為60°,求| + |;
(2)若 垂直,求 的夾角.
(3)若 ,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在下列結論中: ①函數y=sin(kπ﹣x)(k∈Z)為奇函數;
②函數 的圖象關于點 對稱;
③函數 的圖象的一條對稱軸為 π;
④若tan(π﹣x)=2,則cos2x=
其中正確結論的序號為(把所有正確結論的序號都填上).

查看答案和解析>>

同步練習冊答案