【題目】已知、是雙曲線:(,)的兩個頂點,點是雙曲線上異于、的一點,為坐標原點,射線交橢圓:于點,設直線、、、的斜率分別為、、、.
(1)若雙曲線的漸近線方程是,且過點,求的方程;
(2)在(1)的條件下,如果,求△的面積;
(3)試問:是否為定值?如果是,請求出此定值;如果不是,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月13日,三屆奧運亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當天有大量網(wǎng)友關注此事件,某網(wǎng)上論壇從關注此事件跟帖中,隨機抽取了100名網(wǎng)友進行調查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強烈關注”,否則為“一般關注”,對這100名網(wǎng)友進一步統(tǒng)計,得到部分數(shù)據(jù)如下的列聯(lián)表.
(1)在答題卡上補全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認為網(wǎng)友對此事件是否為“強烈關注”與性別有關?
(2)該論壇欲在上述“強烈關注”的網(wǎng)友中按性別進行分層抽樣,共抽取5人,并在此5人中隨機抽取兩名接受訪談,記女性訪談者的人數(shù)為占,求5的分布列與數(shù)學期望.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式與數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,為橢圓的左、右焦點,動點的坐標為,過點的直線與橢圓交于,兩點.
(3)求,的坐標;
(4)若直線,,的斜率之和為0,求的所有整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在區(qū)間內的單調函數(shù),且對任意,都有,設為的導函數(shù),,則函數(shù)的零點個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)集由實數(shù)構成,且滿足:若(且),則.
(1)若,試證明中還有另外兩個元素;
(2)集合是否為雙元素集合,并說明理由;
(3)若中元素個數(shù)不超過8個,所有元素的和為,且中有一個元素的平方等于所有元素的積,求集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在的表格填上數(shù)字,設在第i行第j列所組成的數(shù)字為,,,則表格中共有5個1的填表方法種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于任意的,若數(shù)列同時滿足下列兩個條件,則稱數(shù)列具有“性質m”:;存在實數(shù)M,使得成立.
數(shù)列、中,、(),判斷、是否具有“性質m”;
若各項為正數(shù)的等比數(shù)列的前n項和為,且,,求證:數(shù)列具有“性質m”;
數(shù)列的通項公式對于任意,數(shù)列具有“性質m”,且對滿足條件的M的最小值,求整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設表示不大于實數(shù)的最大整數(shù),函數(shù),若關于的方程有且只有5個解,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com