【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點(diǎn)個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

【答案】B

【解析】

設(shè)tfx)﹣lnx,則fx)=lnx+t,又由ft)=e+1,求出fx)=lnx+e,從而求出gx)的解析式,根據(jù)函數(shù)單調(diào)性求出函數(shù)的零點(diǎn)個(gè)數(shù)即可.

對任意的x0+∞),都有f[fx)﹣lnx]e+1

又由fx)是定義在(0,+∞)上的單調(diào)函數(shù),則fx)﹣lnx為定值,

設(shè)tfx)﹣lnx,則fx)=lnx+t,

又由ft)=e+1,即lnt+te+1,解得:te

fx)=lnx+e,f′(x)=0

gx)=lnx+e,則g′(x)=+0

gx)在(0,+∞)遞增,

g1)=e10,g)=﹣10,

存在x0,1),使得gx0)=0,

故函數(shù)gx)有且只有1個(gè)零點(diǎn),

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時(shí)的最大值.

試題解析】

(Ⅰ)

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時(shí), ,當(dāng)時(shí), ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時(shí), ,∴上單調(diào)遞增.

又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .

①當(dāng)時(shí), ,即,這時(shí), ;

②當(dāng)時(shí), ,即,這時(shí), .

綜上, 上的最大值為:當(dāng)時(shí), ;

當(dāng)時(shí), .

[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為為圓上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,點(diǎn),為拋物線上一點(diǎn),且不在直線上,則周長的最小值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是R上的奇函數(shù),在(0,+)上是增函數(shù),且f3=0,則滿足fx>0的實(shí)數(shù)x的范圍是(

A.,30,3B.3,03,+

C.33,+D.3,00,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)且點(diǎn)在函數(shù)的圖象上.

1)求函數(shù)的解析式,并在圖中的直角坐標(biāo)系中畫出函數(shù)的圖象;

2)求不等式的解集;

3)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示.

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布 近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示),請用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案::

(。┑梅植坏陀的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ⅱ)每次獲贈(zèng)送的隨機(jī)話費(fèi)和對應(yīng)的概率為:

贈(zèng)送的隨機(jī)話費(fèi)(單元:元)

20

40

概率

0.75

0.25

現(xiàn)有市民甲要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.

附:參考數(shù)據(jù)與公式

,若,則

;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校、兩個(gè)班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

其中正確結(jié)論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

同步練習(xí)冊答案