(12分)設(shè)分別是橢圓的左、右焦點.
(Ⅰ)若是該橢圓上的一個動點,求的最大值和最小值;
(Ⅱ)設(shè)過定點的直線與橢圓交于不同的兩點、,且∠為鈍角(其中為坐標原點),求直線的斜率的取值范圍.
(Ⅰ)易知所以,設(shè)
 (2分)
因為,故當,即點為橢圓短軸端點時,有最小值
,即點為橢圓長軸端點時,有最大值.                     (4分)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線
聯(lián)立,消去,整理得:
                                    (6分)
得:            ①      (7分)

                                            (8分)
(10分)
,即              ②                      (11分)
故由①、②得 ∴的取值范圍是.                 (12分)
略       
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)中心在原點的橢圓離心率為e,左、右兩焦點分別為F1、F2,拋物線F2為焦點,點P為拋物線和橢圓的一個交點,若PF2x軸成45°,則e的值為    ▲    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題9分,第(2)小題9分)
設(shè)復數(shù)與復平面上點對應.
(1)設(shè)復數(shù)滿足條件(其中,常數(shù)),當為奇數(shù)時,動點的軌跡為;當為偶數(shù)時,動點的軌跡為,且兩條曲線都經(jīng)過點,求軌跡的方程;
(2)在(1)的條件下,軌跡上存在點,使點與點的最小距離不小于,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知點是橢圓上的動點。
(1)求的取值范圍
(2)若恒成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左焦點,右頂點A,上頂點B,且,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的兩焦點為,現(xiàn)將坐標平面沿軸折成二面角,二面角的度數(shù)為,已知折起后兩焦點的距離,則滿足題設(shè)的一組數(shù)值:              (只需寫出一組就可以,不必寫出所有情況)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的參數(shù)方程是 (為參數(shù)),則它的離心率為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的長軸長為           

查看答案和解析>>

同步練習冊答案