分析 將直線AB的方程,代入橢圓方程,利用韋達定理及拋物線的性質,即可求得$\frac{1}{丨AF丨}$+$\frac{1}{丨BF丨}$=1,由$|{AF}|=\frac{3}{2}$,代入即可求得|BF|的值.
解答 解:拋物線C:y2=4x的焦點F坐標(1,0),準線方程為x=-1.
設過F點直線方程為y=k(x-1),設A(x1,y1),B(x2,y2)
代$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,化簡后為:k2x2-(2k2+4)x+k2=0.
則x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,x1x2=1,
根據拋物線性質可知,|AF|=x1+1,|BF|=x2+1,
∴$\frac{1}{丨AF丨}$+$\frac{1}{丨BF丨}$=$\frac{{x}_{1}+1+{x}_{2}+1}{({x}_{1}+1)({x}_{2}+1)}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}+{x}_{2}+{x}_{1}{x}_{2}+1}$=1,
將$|{AF}|=\frac{3}{2}$代入上式得:|BF|=3.
故答案為:3.
點評 本題考拋物線的性質,直線與拋物線的位置關系,拋物線焦半徑公式,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | ln 2+1 | C. | ln 2-1 | D. | ln 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com