16.已知sinα=$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$≤α≤π,則tanα=$-\frac{1}{2}$.

分析 求出余弦函數(shù)值,然后求解正切函數(shù)值即可.

解答 解:sinα=$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$≤α≤π,可得cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,
tanα=$\frac{sinα}{cosα}$=$-\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點評 本題考查三角函數(shù)的化簡求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.下列求導運算正確的是( 。
A.(log2x)′=$\frac{1}{xln2}$B.($\frac{cosx}{x}$)′=$\frac{xsinx-cosx}{x}$
C.(10x)′=10xlgeD.(x+$\sqrt{x}$)′=1-$\frac{1}{2\sqrt{x}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復(fù)數(shù)z=$\frac{3+ai}{2-i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)z的共軛復(fù)數(shù)是(  )
A.$\frac{9}{5}$iB.-$\frac{9}{5}$iC.3iD.-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.定義在區(qū)間I上的函數(shù)f(x),若任給x0∈I,均有f(x0)∈I,則稱函數(shù)f(x)在區(qū)間I上“和諧函數(shù)”.
(1)已知函數(shù)判斷f(x)=-2x+5,在區(qū)間[-1,3]是否“和諧函數(shù)“,并說明理由;
(2)設(shè)g(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$是[1,b]上的“和諧函數(shù)”,求常數(shù)b的取值范圍;
(3)函數(shù)h(x)=$\frac{2x+m}{x+2}$在區(qū)間[2,3]上“和諧函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\overrightarrow a$、$\overrightarrow b$是夾角為600的單位向量,$\overrightarrow c=3\overrightarrow a+2\overrightarrow b$,$\overrightarrow d=m\overrightarrow a-4\overrightarrow b$,(1)求$|{\overrightarrow a+3\overrightarrow b}|$;(2)當m為何值時,$\overrightarrow c$與$\overrightarrow d$平行?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=Asin(ωx+φ),其中ω>0,A>0,-$\frac{π}{2}$<φ<0,x∈R且函數(shù)f(x)的最小值為-$\frac{\sqrt{2}}{2}$,相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,滿足f($\frac{π}{4}$)=$\frac{1}{2}$
(1)求f(x)的解析式;
(2)若對任意實數(shù)x∈[$\frac{π}{6}$,$\frac{π}{3}$],不等式f(x)-m<$\frac{3}{2}$恒成立,求實數(shù)m的取值范圍;
(3)設(shè)0<x≤$\frac{π}{2}$,且方程f(x)=m有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=x3+2ax2+bx+a2(a,b∈R)在x=2處有極值為17,則b的值為-100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.過拋物線C:y2=4x的焦點F作直線l交C于A,B兩點,若$|{AF}|=\frac{3}{2}$,則|BF|=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.當x取何值時,復(fù)數(shù)z=(x2+x-2)+(x2-3x+2)i
(1)是實數(shù)?
(2)是純虛數(shù)?
(3)對應(yīng)的點在第四象限?

查看答案和解析>>

同步練習冊答案