15.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,則目標函數(shù)z=x+4y的最大值是( 。
A.5B.4C.3D.2

分析 先畫出約束條件的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)Z=x+4y的最大值.

解答 解:約束條件$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$的可行域如下圖示:
由圖易得目標函數(shù)z=x+4y在A處取得最大值,由$\left\{\begin{array}{l}{x+y=1}\\{y=2x}\end{array}\right.$,解得A($\frac{1}{3}$,$\frac{2}{3}$),
則目標函數(shù)z=x+4y的最大值是:$\frac{1}{3}+\frac{2}{3}×4$=3.
故選:C.

點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過拋物線C:y2=4x的焦點F作直線l交C于A,B兩點,若$|{AF}|=\frac{3}{2}$,則|BF|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.當x取何值時,復(fù)數(shù)z=(x2+x-2)+(x2-3x+2)i
(1)是實數(shù)?
(2)是純虛數(shù)?
(3)對應(yīng)的點在第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合U={(x,y)|x∈R,y∈R},A={(x,y)|y=x+1},B={(x,y)|$\frac{y}{x+1}$=1},則A∩∁UB=( 。
A.{(-1,0)}B.{-1}C.{-1,0}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸AB為的長為6,離心率為$\frac{1}{3}$.
(1)求橢圓E方程;
(2)過橢圓E的右焦點F的直線與橢圓E交于M,N兩點,記△AMB的面積為S1,△ANB的面積為S2,當S1-S2取得最大值時,求S1+S2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2x-lnx的單調(diào)遞增區(qū)間是$(\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xex-lnx(ln2≈-0.693,$\sqrt{e}$≈1.648,均為不足近似值)
(1)當x≥1時,判斷函數(shù)f(x)的單調(diào)性;
(2>證明:當x>0時,不等式f(x)>$\frac{27}{20}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如果雙曲線的焦距、虛軸長、實軸長成等差數(shù)列,則離心率等于$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)校為了加強學(xué)生的安全教育,對學(xué)校旁邊A,B兩個路口進行了8天的監(jiān)測調(diào)查,得到每天路口不按交通規(guī)則過馬路的學(xué)生人數(shù)(如莖葉圖所示),且A路口數(shù)據(jù)的平均數(shù)比B路口數(shù)據(jù)的平均數(shù)小2.
(1)求出A路口8個數(shù)據(jù)的中位數(shù)和莖葉圖中m的值;
(2)在B路口的數(shù)據(jù)中任取大于35的2個數(shù)據(jù),求所抽取的兩個數(shù)據(jù)中至少有一個不小于40的概率.

查看答案和解析>>

同步練習(xí)冊答案