【題目】用如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1 , E是AC的中點.
(1)求證:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1 , 求二面角A﹣BA1﹣E的余弦值.

【答案】
(1)證明:取AB的中點F,連結(jié)EF,A1F.

∵AB=2A1B1,∴BF=A1B1

又A1B1∥AB,∴四邊形A1FBB1是平行四邊形,

∴A1F∥BB1,∵E,F(xiàn)分別AC,AB的中點,∴EF∥BC,

又EF平面A1EF,A1F平面A1EF,EF∩A1F=F,BC平面BB1C1C,BB1平面BB1C1C,BC∩BB1=B,

∴平面A1EF∥平面BB1C1C.

又A1E平面A1EF,∴A1E∥平面BB1C1C


(2)解:(2)連結(jié)CF,則CF⊥AB,

以F為原點,F(xiàn)C為x軸,F(xiàn)B為y軸,F(xiàn)A1為z軸,建立空間直角坐標(biāo)系,

則A(0,﹣1,0),A1(0,0,1),B(0,1,0),C( ,0,0),

∴E( ,﹣ ,0), =(0,﹣1,1), =( ,﹣ ,0),

設(shè)平面A1BE的一個法向量為 =(x,y,z),

,取y=1,得 =( ,1,1),

平面ABA1的法向量 =(1,0,0),設(shè)二面角A﹣BA1﹣E的平面角為θ,

,則cosθ=

∴二面角A﹣BA1﹣E的余弦值為 ,


【解析】(1)取AB的中點F,連結(jié)EF,A1F.則可通過證明平面A1EF∥平面BB1C1C得出A1E∥平面BB1C1C;(2)連結(jié)CF,則CF⊥AB,以F為原點,F(xiàn)C為x軸,F(xiàn)B為y軸,F(xiàn)A1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣BA1﹣E的余弦值.
【考點精析】本題主要考查了直線與平面平行的判定的相關(guān)知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣a)e1x , g(x)=f(x)+ae1x﹣a(x﹣1).
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=1時,求g(x)在( ,2)上的最大值;
(3)當(dāng)f(x)有兩個極值點x1 , x2(x1<x2)時,總有x2f(x1)≤λg′(x1),求實數(shù)λ的值(g′(x)為g(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位將舉辦慶典活動,要在廣場上豎立一形狀為等腰梯形的彩門BADC (如圖),設(shè)計要求彩門的面積為S (單位:m2)高為h(單位:m)(S,h為常數(shù)),彩門的下底BC固定在廣場地面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長度和記為l.
(1)請將l表示成關(guān)于α的函數(shù)l=f(α);
(2)問當(dāng)α為何值時l最小?并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,隨機對使用微信的60人進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù)統(tǒng)計表,每天使用微信時間在兩小時以上的人被定義為“微信達(dá)人”,不超過2兩小時的人被定義為“非微信達(dá)人”,己知“非微信達(dá)人”與“微信達(dá)人”人數(shù)比恰為3:2.
(1)確定x,y,p,q的值,并補全須率分布直方圖;
(2)為進(jìn)一步了解使用微信對自己的日不工作和生活是否有影響,從“微信達(dá)人”和“非微信達(dá)人”60人中用分層抽樣的方法確定10人,若需從這10人中隨積選取3人進(jìn)行問卷調(diào)查,設(shè)選取的3人中“微信達(dá)人”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

使用微信時間(單位:小時)

頻數(shù)

頻率

(0,0.5]

3

0.05

(0.5,1]

x

p

(1,1.5]

9

0.15

(1.5,2]

15

0.25

(2,2.5]

18

0.30

(2.5,3]

y

q

合計

60

1.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0 , 2 )(x0 )是拋物線C上一點.圓M與線段MF相交于點A,且被直線x= 截得的弦長為 |MA|.若 =2,則|AF|等于( )
A.
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斐波拉契數(shù)列0,1,1,2,3,5,8…是數(shù)學(xué)史上一個著名的數(shù)列,定義如下:F(0)=0,F(xiàn)(1)=1,F(xiàn)(n)=F(n﹣1)+F(n﹣2)(n≥2,n∈N).某同學(xué)設(shè)計了一個求解斐波拉契數(shù)列前15項和的程序框圖,那么在空白矩形和判斷框內(nèi)應(yīng)分別填入的詞句是( )

A.c=a,i≤14
B.b=c,i≤14
C.c=a,i≤15
D.b=c,i≤15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知矩形ABCD中, ,點E是邊BC上的點,且 ,DE與AC相交于點H.現(xiàn)將△ACD沿AC折起,如圖2,點D的位置記為D',此時
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H﹣D'E﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點分別為F1 , F2 , O為坐標(biāo)原點,點P是雙曲線在第一象限內(nèi)的點,直線PO,PF2分別交雙曲線C的左、右支于另一點M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+ax2+bcosx在點 處的切線方程為
(Ⅰ)求a,b的值,并討論f(x)在 上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證:
(參考公式:

查看答案和解析>>

同步練習(xí)冊答案