直線l在雙曲線=1上截得弦長(zhǎng)為4,其斜率為2,則直線l在y軸上的截距是_____________.
±
設(shè)直線l的方程為y="2x+m.                                                " ①
將①代入雙曲線方程,得10x2+12mx+3(m2+2)=0,設(shè)l與雙曲線的交點(diǎn)為A(x1,y1), B(x2,y2),由韋達(dá)定理可得x1+x2=-m,                                                      ②
x1x2=(m2+2),                                                               ③
又y1=2x1+m,y2=2x2+m,
∴y1-y2=2(x1-x2).再利用②③,∴|AB|2=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2]=5[m2-4×(m2+2)].
∵|AB|=4,∴5[m2-(m2+2)]=42.∴3m2=70.∴m=±.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線C:x2-y2=1及直線l:y=kx-1.
(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且△AOB的面積為2,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線的漸近線方程為2x±3y=0,且兩頂點(diǎn)間的距離為6,則該雙曲線的方程為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)A(3,2)、F(2,0),在雙曲線x2-=1上有一點(diǎn)P,使得|PA|+|PF|最小,則點(diǎn)P的坐標(biāo)是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線l:y=k(x-2)與雙曲線x2-y2=1(x>0)相交于A、B兩點(diǎn),則l的傾斜角范圍是(    )
A.[0,π]                                     B.(,)∪(,)
C.[0,]∪(,π)                           D.(,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線的一個(gè)焦點(diǎn)F1且垂直于實(shí)軸的弦PQ,若F2是另一個(gè)焦點(diǎn),且∠PF2Q=90°,則此雙曲線的離心率為(    )
A.+1B.C.-1D.+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題




交于兩個(gè)不同的點(diǎn);
(I)求雙曲線C的離心率e的取值范圍;
(II)設(shè)直線ly軸的交點(diǎn)為P,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A(0,7)、B(0,-7)、C(12,2),以C為一個(gè)焦點(diǎn)作過(guò)A、B的橢圓,求另一焦點(diǎn)F的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)可作條直線與雙曲線有且只有一個(gè)公共點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案