【題目】已知點,,在圓E上,過點的直線l與圓E相切.
Ⅰ求圓E的方程;
Ⅱ求直線l的方程.
【答案】(Ⅰ);(Ⅱ)直線l的方程為或.
【解析】
Ⅰ根據(jù)題意,設圓E的圓心為,半徑為r;將A、B、C三點的坐標代入圓E的方程可得,即可得圓E的方程;Ⅱ根據(jù)題意,分2種情況討論:,當直線l的斜率不存在時,直線l的方程為,驗證可得此時符合題意,,當直線l的斜率存在時,設直線l的方程為,即,由直線與圓的位置關系計算可得k的值,可得此時直線的方程,綜合即可得答案.
Ⅰ根據(jù)題意,設圓E的圓心為,半徑為r;
則圓E的方程為,
又由點,,在圓E上,
則有,解可得,
即圓E的方程為;
Ⅱ根據(jù)題意,分2種情況討論:
,當直線l的斜率不存在時,直線l的方程為,與圓M相切,符合題意;
,當直線l的斜率存在時,設直線l的方程為,即,
圓心E到直線l的距離,解可得,
則直線l的方程為,即,
綜合可得:直線l的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為8.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的兩條相鄰對稱軸之間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向左平移個單位,再將所得函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)的圖象,若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次摸取獎票的活動中,已知中獎的概率為,若票倉中有足夠多的票則下列說法正確的是
A. 若只摸取一張票,則中獎的概率為
B. 若只摸取一張票,則中獎的概率為
C. 若100個人按先后順序每人摸取1張票則一定有2人中獎
D. 若100個人按先后順序每人摸取1張票,則第一個摸票的人中獎概率最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知ω>0,0<φ<π,直線和是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對稱軸,若將函數(shù)f(x)圖象上每一點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標變?yōu)樵瓉淼?/span>2倍,則得到的圖象的函數(shù)解析式是( )
A.B.
C.y=2cos2xD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,動圓C經(jīng)過點,且被y軸截得的弦長為2p,記動圓圓心C的軌跡為E.
Ⅰ求軌跡E的方程;
Ⅱ求證:在軌跡E上存在點A,B,使得為坐標原點是以A為直角頂點的等腰直角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若不等式在上恒成立,求a的取值范圍;
(2)若函數(shù)恰好有三個零點,求b的值及該函數(shù)的零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com