【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.

(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

【答案】(Ⅰ)證明:如圖,

取AC中點O,連接PO,BO,

∵PA=PC,∴PO⊥AC,

又∵底面ABC為正三角形,∴BO⊥AC,

∵PO∩OB=O,∴AC⊥平面POB,則AC⊥PB;

(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,

PO⊥AC,∴PO⊥平面ABC,

以O為原點,分別以OA、OB、OP所在直線為x、y、z軸建立空間直角坐標系,

∵AC=PC=2,∴P(0,0, ),B(0, ,0),C(﹣1,0,0), ,

,

設平面PBC的一個法向量為 ,

,取y=﹣1,得 ,

是平面PAC的一個法向量,

∴cos< >=

∴二面角A﹣PC﹣B的余弦值為


【解析】(1)取AC中點O,連接PO,BO,根據(jù)等腰三角形三線合一得出PO⊥AC,再由ABC為正三角形BO⊥AC,從而得到AC⊥平面POB,則AC⊥PB,(2)以O為原點,分別以OA、OB、OP所在直線為x、y、z軸建立空間直角坐標系,用法向量法求出二面角的余弦值.
【考點精析】掌握空間中直線與直線之間的位置關系是解答本題的根本,需要知道相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工藝品廠要設計一個如圖1所示的工藝品,現(xiàn)有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1
(Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點,
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內(nèi)部的動點,設向量 (m,n為實數(shù)),則m+n的取值范圍是(  )

A.(1,2]
B.[5,6]
C.[2,5]
D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標方程;
(Ⅱ)設曲線C經(jīng)過伸縮變換 得到曲線C',若點P(1,0),直線l與C'交與A,B,求|PA||PB|,|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于(  )

A.55π
B.75π
C.77π
D.65π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,左頂點為A,左焦點為F1(﹣2,0),點B(2, )在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點,直線AE,AF分別與y軸交于點M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點P,使得無論非零實數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
(1)當x∈[2,4]時.求該函數(shù)的值域;
(2)若f(x)≥mlog2x對于x∈[4,16]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c且a+2c=2bcosA.
(1)求角B的大。
(2)若b=2 ,a+c=4,求△ABC的面積.

查看答案和解析>>

同步練習冊答案